Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M I N
a, Xét tam giác AHM và tam giác ACH ta có :
^H = ^HMA = 900
^A _ chung
Vậy tam giác AHM ~ tam giác ACH ( g.g )
\(\Rightarrow\frac{AH}{AC}=\frac{AM}{AH}\)( tỉ số đồng dạng ) \(\Rightarrow AH^2=AM.AC\)
b, đề sai ko ?
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc ABC chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
b: Xét ΔCAB vuông tại A và ΔCHA vuông tại H có
góc ACB chung
Do đó: ΔCAB\(\sim\)ΔCHA
Suy ra: CA/CH=CB/CA
hay\(CA^2=CH\cdot CB\)
Phần a dựa vào hệ thức lượng trong tam giác vuông
Phần b chứng minh tam giác đồng dạng thì sẽ ra
Phần c, d tớ chưa nghĩ ra
b) + Xét Δ ABC có \(\widehat{BAC}=90\text{°}\)
\(\Rightarrow\) \(BC^2=AB^2+AC^2\) ( định lý Pytago )
\(\Rightarrow\) \(BC^2=6^2+8^2\)
\(\Rightarrow\) \(BC^2=100\)
\(\Rightarrow\) BC = 10 ( cm )
+ Δ HBA \(\sim\) Δ ABC ( cmt )
\(\Rightarrow\) \(\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Rightarrow\) \(\frac{AH}{8}=\frac{6}{10}\)
\(\Rightarrow\) AH = 4,8 cm
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a) Xét △ HAB và △ HCA có
ʌCHA = ʌBHA
ʌHAC = ʌHAB ( cùng phụ với góc ABH)
⇒ △ HAB đồng dạng △ HCA
b) △ HAB đồng dạng △ HCA
⇒\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
⇒HA.HA = HB.HC
⇒HA2 = HB.HC
Câu c bạn cho HB=9 hình như sai đề ak