K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
8 tháng 5 2021
a) Ta có: ΔABD vuông tại A(gt)
nên A nằm trên đường tròn đường kính BD(Định lí quỹ tích cung chứa góc)
mà BD là đường kính của (O)
nên A\(\in\)(O)(Đpcm)
8 tháng 5 2021
b) Xét (O) có
\(\widehat{AKB}\) là góc nội tiếp chắn cung AB
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{AKB}=\widehat{ADB}\)(Hệ quả góc nội tiếp)
a, Xét đường tròn (O) có: \(\Delta\)BKD nội tiếp; BD là đường kính
\(\Rightarrow\) \(\Delta\)BKD vuông tại K (sự xác định đường tròn)
\(\Rightarrow\) BK \(\perp\) KD
Mà C \(\in\) BK \(\Rightarrow\) CK \(\perp\) KD
Xét \(\Delta\)CKD và \(\Delta\)CAB có:
\(\widehat{CKD}=\widehat{CAB}=90^o\)
\(\widehat{C}\) chung
\(\Rightarrow\) \(\Delta\)CKD ~ \(\Delta\)CAB (gg)
\(\Rightarrow\) \(\dfrac{CK}{CA}=\dfrac{CD}{CB}\) (tỉ số đồng dạng)
\(\Rightarrow\) CK.CB = CD.CA (đpcm)
b, Xét tam giác ABD có: AB = AD (gt)
\(\Rightarrow\) \(\Delta\)ABD cân tại A (dhnb)
Mà AO là trung tuyến ứng với BD của \(\Delta\)ABD (O là tâm của đường tròn đk BD)
\(\Rightarrow\) AO là đường cao ứng với BD (tính chất tam giác cân)
\(\Rightarrow\) \(\widehat{AOB}\) = 90o
Xét tứ giác BHOA có: \(\widehat{BHA}=\widehat{BOA}=90^o\) (AH là đường cao; cmt)
Hai góc có đỉnh kề nhau cùng nhìn cạnh AB dưới 1 góc vuông ko đổi
\(\Rightarrow\) BHOA là tứ giác nội tiếp (dhnb tứ giác nội tiếp)
\(\Rightarrow\) \(\widehat{AHO}=\widehat{ABO}\) (2 góc nội tiếp cùng chắn \(\stackrel\frown{AO}\)) (1)
Xét tam giác ABD cân tại A có: \(\widehat{BAD}=90^o\) (tam giác ABD vuông tại A)
\(\Rightarrow\) Tam giác ABD vuông cân tại A
\(\Rightarrow\) \(\widehat{ABD}\) = 45o (t/c tam giác vuông cân) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{AHO}=45^o\)
Chúc bn học tốt!