Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử điểm I thỏa mãn:
\(\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{0}\)\(\Leftrightarrow\overrightarrow{IA}-\overrightarrow{IC}+\overrightarrow{IB}-\overrightarrow{IC}+2\overrightarrow{IB}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{CA}+\overrightarrow{CB}+2\overrightarrow{IB}=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{IB}=\overrightarrow{AC}+\overrightarrow{BC}\)
\(\Leftrightarrow\overrightarrow{IB}=\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}\).
Xác định véc tơ: \(\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}\).
A B C B' K
Dựng điểm B' sao cho \(\overrightarrow{BC}=\overrightarrow{CB'}\).
\(\overrightarrow{AC}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CB'}=\overrightarrow{AB'}\).
\(\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}=\dfrac{\overrightarrow{AB'}}{2}\).
Dựng điểm I sao cho \(\overrightarrow{IB}=\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}=\overrightarrow{AK}\) (K là trung điểm của AB').
A B C B' K I
b) Tìm điểm I sao cho: \(\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{0}\) và chứng mịn điểm I cố định.
Có: \(\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{IA}+3\overrightarrow{IB}+2\overrightarrow{CI}\)
\(=\left(\overrightarrow{CI}+\overrightarrow{IA}\right)+\left(\overrightarrow{CI}+\overrightarrow{IB}\right)+2\overrightarrow{IB}\)
\(=\overrightarrow{CA}+\overrightarrow{CB}+2\overrightarrow{IB}\).
Suy ra: \(\overrightarrow{CA}+\overrightarrow{CB}+2\overrightarrow{IB}=\overrightarrow{0}\)\(\Leftrightarrow\overrightarrow{IB}=\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}\)
Vậy điểm I xác định sao cho \(\overrightarrow{IB}=\dfrac{\overrightarrow{AC}+\overrightarrow{BC}}{2}\) .
Do A, B, C cố định nên tồn tại một điểm I duy nhất.
Theo giả thiết:
Có \(\overrightarrow{MN}=\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}\)\(=\overrightarrow{MI}+\overrightarrow{IA}+3\left(\overrightarrow{MI}+\overrightarrow{IB}\right)-2\left(\overrightarrow{MI}+\overrightarrow{IC}\right)\)
\(=2\overrightarrow{MI}+\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}\)
\(=2\overrightarrow{MI}\) (Do các xác định điểm I).
Vì vậy \(\overrightarrow{MN}=2\overrightarrow{MI}\) nên hai véc tơ \(\overrightarrow{MN},\overrightarrow{MI}\) cùng hướng.
Suy ra 3 điểm M, N, I thẳng hàng hay MN luôn đi qua điểm cố định I.
Gọ G là trọng tâm của tam giác ABC.Ta có: \(3\overrightarrow{IG}=\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=3\overrightarrow{IB}+\overrightarrow{IC}\) ⇒ \(\overrightarrow{IG}=\overrightarrow{IB}+\dfrac{1}{3}\overrightarrow{IC}\) (*)
\(3\overrightarrow{JG}=\overrightarrow{JA}+\overrightarrow{JB}+\overrightarrow{JC}=3\overrightarrow{JI}+\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=3\overrightarrow{JI}+3\overrightarrow{IB}+\overrightarrow{IC}\Rightarrow\overrightarrow{JG}=\overrightarrow{JI}+\overrightarrow{IB}+\dfrac{1}{3}\overrightarrow{IC}\) (**)
Ta có:
\(\overrightarrow{IA}=2\overrightarrow{IB}\Rightarrow\overrightarrow{IA}=2\left(\overrightarrow{IA}+\overrightarrow{AB}\right)\Rightarrow\overrightarrow{IA}=-2\overrightarrow{AB}\Rightarrow\overrightarrow{IB}=-\overrightarrow{AB}\) (1)
\(\overrightarrow{IC}=\overrightarrow{IA}+\overrightarrow{AC}=-2\overrightarrow{AB}+\overrightarrow{AC}\) (2)
\(\overrightarrow{JI}=\overrightarrow{JA}+\overrightarrow{AI}=\dfrac{-2}{5}\overrightarrow{AC}+2\overrightarrow{AB}\) (3)
Thế (1),(2),(3) vào (*),(**) tac có
\(\overrightarrow{IG}=\dfrac{-5}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\) (1')
\(\overrightarrow{JG}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{-1}{15}\overrightarrow{AC}\) (2')
Từ (1') và (2') ta có: \(\overrightarrow{IG}=-5\overrightarrow{JG}\) \(\Rightarrow\) 3 điểm I,J,G thẳng hàng . Do đó IJ đi qua trọng tâm của tam giác ABC (đpcm)
A J C B I