Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K H I
a) Xét △ABH và △ACK có:
AHB = AKC (= 90o)
AB = AC (△ABC cân)
KAH: chung
=> △ABH = △ACK (ch-gn)
=> AH = AK (2 cạnh tương ứng)
b) Xét △AIK và △AIH có:
AKI = AHI (= 90o)
AI: chung
AK = AH (cmt câu a)
=> △AIK = △AIH (ch-cgv)
=> IAK = IAH (2 góc tương ứng)
=> AI là phân giác BAC
a) Hai tam giác vuông ABH và ACK có:
AB = AC(gt)
Góc A chung.
nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)
suy ra AH = AK.
b) Hai tam giác vuông AIK và AIH có:
AK = AH(cmt)
AI cạnh chung
Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)
Suy ra GÓC IAK = GÓC IAH
Vậy AI là tia phân giác của góc A
a) Hai tam giác vuông ABH và ACK có:
AB = AC(gt)
Góc A chung.
nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)
suy ra AH = AK.
b) Hai tam giác vuông AIK và AIH có:
AK = AH(cmt)
AI cạnh chung
Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)
Suy ra ˆIAK
=ˆIAH
Vậy AI là tia phân giác của góc a
Hình như đề bài sai thì phải. Theo đề bài trên thì BH trùng với AB; CK trùng với AC
a, Xét \(\Delta\)tam giác vuông AKC và tam giác vuông AHB ta có :
AB=AC(do tam giácABC cân tại a)
góc A chung
=}tam giácAkc =tam giác AHB (ch_gn)
=}AH=AK(2 cạnh tương ứng)
b,Do AK=AH(cm câu a)=} I thuộc phân giác góc A
=}AI là phân giác góc A
k hộ mình nhé
a) Xét ΔACK và ΔABH
Ta có: ∠AKC = ∠AHB = 900 (gt)
AB = AC (ΔABC cân tại A)
∠BAC chung
nên ΔACK = ΔABH (cạnh huyền-cạnh góc vuông)
suy ra AH = AK
b) Ta có BH⊥AC; CK⊥AB(gt)
mà BH và CK cắt nhau tại I
nên I là trực tâm của ΔABC
suy ra AI là đường cao của ΔABC
mà ΔABC cân tại A
nên AI la Phân giác của ∠BAC
Lời giải:
a. Xét tam giác $ABH$ và $ACK$ có:
$AB=AC$
$\widehat{A}$ chung
$\widehat{AHB}=\widehat{AKC}=90^0$
$\Rightarrow \triangle ABH=\triangle ACK$ (ch-gn)
$\Rightarrow AH=AK$
b.
Từ tam giác bằng nhau phần a suy ra $\widehat{B_1}=\widehat{C_1}$
Vì $AB=AC; AK=AH\Rightarrow AB-AK=AC-AH$
$\Rightarrow BK=CH$
Xét tam giác $KBI$ và $HCI$ có:
$\widehat{B_1}=\widehat{C_1}$
$\widehat{BKI}=\widehat{CHI}=90^0$
$BK=CH$
$\Rightarrow \triangle KBI=\triangle HCI$ (c.g.c)
$\Rightarrow BI=CI$
Xét tam giác $ABI$ và $ACI$ có:
$AB=AC$
$AI$ chung
$BI=CI$
$\Rightarrow \triangle ABI=\triangle ACI$ (c.c.c)
$\Rightarrow \widehat{BAI}=\widehat{CAI}$
$\Rightarrow AI$ là phân giác $\widehat{A}$
$
Hình vẽ: