K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

A B C H K Từ A kẻ đường cao AH vuông góc với BC tại H.

Từ B kẻ đường cao BK vuông góc với AC tại K

Khi đó, ta có BH = HC = 1/2BC = 5 (cm)

\(AH=\sqrt{AC^2-\left(\frac{BC}{2}\right)^2}=13^2-5^2=12\left(cm\right)\)

Dễ thấy hai tam giác HCA và KCB đồng dạng (g.g)

Suy ra \(\frac{HC}{KC}=\frac{AC}{BC}\) hay \(\frac{5}{KC}=\frac{13}{10}\Rightarrow KC=\frac{50}{13}\Rightarrow AK=AC-KC=13-\frac{50}{13}=\frac{119}{13}\left(cm\right)\)

Xét tam giác AKB, ta có : 

\(CosA=\frac{AK}{AC}=\frac{\frac{119}{13}}{13}=\frac{119}{169}\)

12 tháng 8 2016

kẽ đường cao AH,tam giác ABC cân tại A=>AH cũng là trung tuyến của BC=>BH=1/2BC=5cm 
xét tam giác AHB theo DL Pitago ta tính dc AH=12cm 
=>cosBAH=AH/AB=12/13 
=>cosBAC=2*12/13=24/13(vì AH là fân giác góc BAC)

31 tháng 8 2017

kẽ đường cao AH,tam giác ABC cân tại A=>AH cũng là trung tuyến của BC=>BH=1/2BC=5cm 
xét tam giác AHB theo DL Pitago ta tính dc AH=12cm 
=>cosBAH=AH/AB=12/13 
=>cosBAC=2*12/13=24/13(vì AH là fân giác góc BAC)

22 tháng 7 2017

Vì tam giác ABC cân tại A nên AE là đường cao đồng thời là đường trung tuyến

=> E là trung điểm BC => EB = EC = 5

Xét ABE vuông tại E có:

Mặt khác:

Xét ABH vuông tại H có:

Đáp án cần chọn là: A

Xét ΔABC vuông tại A có

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{144}{13}\left(cm\right)\\AH=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)

3 tháng 9 2021

C.ơn bn nhìu nha

 

Gọi O là tâm đường tròn ngoại tiếp ΔABC

Gọi H là giao của AO với BC

AB=AC

OB=OC

Do đó: AO là trung trực của BC

=>AH là trung trực của BC

=>H là trung điểm của BC

HB=HC=4/2=2cm

Kẻ giao của AO với (O) là D

=>AD là đường kính của (O)

Xét (O) có

ΔABD nội tiếp

ADlà đường kính

Do đó: ΔBAD vuông tại B

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>\(AH^2=6^2-2^2=32\)

=>\(AH=4\sqrt{2}\left(cm\right)\)

Xét ΔBAD vuông tại B có BH là đường cao

nên AB^2=AH*AD

=>\(AD=\dfrac{6^2}{4\sqrt{2}}=\dfrac{9}{\sqrt{2}}\left(cm\right)\)

=>\(R=\dfrac{AD}{2}=\dfrac{9}{2\sqrt{2}}\left(cm\right)\)

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)