Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, M(x) = 2x^3 + x^2 + 5 - 3x +3x^2 - 2x^3 - 4x^2 +1`
`M(x)= (2x^3 - 2x^3)+(x^2+3x^2)-3x+(5+1) `
`M(x)= 4x^2-3x+6`
`b,` giá trị của `M(x)` tại `x=0`
`-> M(0)=2*0^3 + 0^2 + 5 - 3*0 +3*0^2 - 2*0^3 - 4*0^2 +1`
`M(0)= 0+0+5-0+0+0-0-0+1 = 5+1=6`
Giá trị của `M(x)` tại `x=1`
`-> M(1)=2*1^3 + 1^2 + 5 - 3*1 +3*1^2 - 2*1^3 - 4*1^2 +1`
`M(1)=2+1+5-3+3-2-4+1 = (2-2)+(1+1)+5-(3-3)-4=2+5-4=7-4=3`
`c,` Giá trị của `P(x)` là cái gì bạn nhỉ?
1. a) M = A + B = x3 - 2x2 + 1 + 2x2 - 1 = x3
b) Thay x = 1/2 vào M => M = (1/2)3 = 1/8
c) Khi M = 0
=> x3 = 0
=> x = 0
2. Sửa đề : B = -x3 + x2
a) M = A + B = x3 - x2 - 2x + 1 - x3 + x2 = - 2x + 1
b) Thay x = 1 vào M => M = - 2.1 + 1 = -1
c) Để M = 0
=> - 2x + 1 = 0
=> 2x = 1
=> x = 0,5
Vậy x = 0,5 thì M = 0
sorry bn nha mk viết thiếu đề bài 2
B= -x^3 +x^2
a, M(\(x\) )+N(\(x\)) = 3\(x^4\) - 2\(x\)3 + 5\(x^2\) - \(4x\)+ 1 + ( -3\(x^4\) + 2\(x^3\)- 3\(x^2\)+ 7\(x\) + 5)
M(\(x\)) + N(\(x\)) = ( 3\(x^4\)- 3\(x^4\))+( -2\(x^3\) + 2\(x^3\))+(5\(x^2\) - 3\(x^2\))+( 7\(x-4x\)) +(1+5)
M(\(x\)) + N(\(x\)) = 0 + 0 + 2\(x^2\) + 3\(x\) + 6
M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
b, P(\(x\)) = M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
P(-2) = 2.(-2)2 + 3.(-2) + 6 = 8 - 6 + 6 = 8
Sửa đa thức M(x) = 3x4 - 2x3 + 5x2 - 4x + 1
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=3x^4-2x^3+5x^2-4x+1-3x^4+2x^3-3x^2+7x+5\)
\(=2x^2+3x+6\)
b, Tại x = -x
< = > 2x = 0 <=> x = 0 thì giá trị của biểu thức P ( x ) = 6
a, Ta có : \(A_{\left(x\right)}=3x^2+5x^3+x-2x^2-x^3+1-4x^3-2x-3\)
=> \(A_{\left(x\right)}=x^2-x-2\)
b, - Để đa thức A bằng đa thức B thì :\(x^2-x-2=2x-2\)
=> \(x^2-x-2-2x+2=0\)
=> \(x^2-3x=0\)
=> \(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)
\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x+6\)
\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)
\(=6x^4-4x^3+10x^2-11x-4\)
a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=-5x^3+6x^2+x+5\)
b: \(H\left(x\right)=Q\left(x\right)+P\left(x\right)=-10x^3+9x^2+3x+10\)
Khi x=1/2 thì \(H\left(x\right)=-10\cdot\dfrac{1}{8}+\dfrac{9}{4}+\dfrac{3}{2}+10=\dfrac{25}{2}\)
a, f(x) = (2x4 - x4) + (5x3 - x3 - 4x3) + ( -x2 + 3x2) + 1
f(x) = x4 + 2x2 +1
b, f(1) = 14 + 2.12 + 1 = 1 + 2 + 1= 4
f(-1) = (-1)4 + 2.(-1)2 + 1 = 1 + 2 +1 =4
c,Có x4 >= 0 Vx
2x2 >= 0 Vx
=> x4 + 2x2 + 1 >= 1 > 0
=> f(x) ko có nghiệm