K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

Ta có: 

\(Q\left(1\right)=a+b+c+d\Rightarrow a+b+c⋮3\left(1\right)\)

\(Q\left(-1\right)=-a+b-c+d⋮3\left(2\right)\)

Cộng (1) với (2), ta có: \(2b+2d⋮3\)

Mà \(d⋮3\Rightarrow2d⋮3\)

\(\Rightarrow2b⋮3\Rightarrow b⋮3\)

\(Q\left(2\right)=8a+4b+2c+d⋮3\)

\(\Rightarrow8a+2c⋮3\)(vì \(4b+d⋮3\))

\(\Rightarrow6a+2a+2c⋮3\)

\(\Rightarrow6a+2\left(a+c\right)⋮3\)

Mà \(a+c⋮3\left(a+b+c⋮3,b⋮3\right)\)

\(\Rightarrow6a⋮3\)

\(\Rightarrow a⋮3\)

\(\Rightarrow c⋮3\)

\(d⋮3\left(gt\right)\)

12 tháng 3 2018

còn thiếu \(b⋮3\)

22 tháng 2 2019

vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5

có p(0) chí hết cho 5

=>a.03+b.02+c.0+d chia hết cho 5

=> d chia hết cho 5

có p(1) chia hết cho 5

=>a.13+b.12+c.1+d chia hết cho 5

=>a+b+c+d chia hết cho 5

 mà d chia hết cho 5

=>a+b+c chia hết cho 5                   (1)

có p(-1) chia hết cho 5

=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5

=>-a+b-c+d chia hết cho 5

 mà d chia hết cho 5

=>-a+b-c chia hết cho 5                         (2)

Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5

                      => 2b chia hết cho 5

                  mà ucln(2,5)=1

                       => b chia hết cho 5

                   mà a+b+c chia hết cho 5

                        => a+c chia hết cho 5 (3)

có p(2) chia hết cho 5

=>a.23+b.22+c.2+d chia hết cho 5

=> 8a + 4b+2c+d chia hết cho 5

 mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)

=>8a+2c chia hết cho 5

=>2(4a+c) chia hết cho 5

 mà ucln(2,5)=1 

=>4a+c chia hết cho 5     (4)

Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5

                     => 3a chia hết cho 5

                        ma ucln(3,5)=1

                         => a chia hết cho 5

                    mà a+c chia hết cho 5

            => c chia hết cho 5

Vậy a,b,c,d chia hết cho 5

22 tháng 2 2019

vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5

có p(0) chí hết cho 5

=>a.03+b.02+c.0+d chia hết cho 5

=> d chia hết cho 5

có p(1) chia hết cho 5

=>a.13+b.12+c.1+d chia hết cho 5

=>a+b+c+d chia hết cho 5

 mà d chia hết cho 5

=>a+b+c chia hết cho 5                   (1)

có p(-1) chia hết cho 5

=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5

=>-a+b-c+d chia hết cho 5

 mà d chia hết cho 5

=>-a+b-c chia hết cho 5                         (2)

Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5

                      => 2b chia hết cho 5

                  mà ucln(2,5)=1

                       => b chia hết cho 5

                   mà a+b+c chia hết cho 5

                        => a+c chia hết cho 5 (3)

có p(2) chia hết cho 5

=>a.23+b.22+c.2+d chia hết cho 5

=> 8a + 4b+2c+d chia hết cho 5

 mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)

=>8a+2c chia hết cho 5

=>2(4a+c) chia hết cho 5

 mà ucln(2,5)=1 

=>4a+c chia hết cho 5     (4)

Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5

                     => 3a chia hết cho 5

                        ma ucln(3,5)=1

                         => a chia hết cho 5

                    mà a+c chia hết cho 5

            => c chia hết cho 5

7 tháng 5 2018

p(x)=ax3+bx2+cx+d

p(x)⋮5 ∀ x

=> p(5)⋮5=> (a53+b52+c5+d)⋮5

=> d⋮5

=> (ax3+bx2+cx)⋮5

=>p(1)=a13+b12+c1[p(1)⋮5]

=a+b+c

p(-1)=a(-1)3+b(-1)2+c(-1)[p(-1)⋮5]

=-a+b-c

=>p(1)+p(-1)=(a+b+c)+(-a+b-c)

=b⋮5

=> (ax3+cx)⋮5

ax3+cx

=x(ax2+c)⋮5

=> ax2+c⋮5

Với x=5=> a.52+c⋮5

=> c⋮5

=> ax2⋮5

=>a⋮5

Vậy a,b,c,d ⋮5

26 tháng 12 2016

\(M_{\left(x\right)}=a\cdot x^3+b\cdot x^2+c\cdot x+d\\ M_{\left(0\right)}=d\)

Mà M(x) nguyên nên d nguyên

\(M_{\left(1\right)}=a+b+c+d\) mà d nguyên nên a+b+c nguyên

\(M_{\left(2\right)}=8a+4b+2c+d\)mà d nguyên, a+b+c nguyên nên 6a+2b nguyên

\(M_{\left(-1\right)}=-a+b-c+d\)mà d nguyên, a+b+c nguyên nên b nguyên

Vì b nguyên mà 6a+2b nguyên nên 6a nguyên, 2b nguyên

20 tháng 6 2020

\(P\left(0\right)=d\inℤ\left(1\right)\)

\(P\left(1\right)=a+b+c+d\inℤ\left(2\right)\)

\(P\left(-1\right)=-a+b-c+d\inℤ\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow2b\inℤ,2a+2c\inℤ\)

\(P\left(2\right)=8a+4b+2c+d=6a+4b+2a+2c+d\inℤ\)

\(\Rightarrow6a\inℤ\)

Vậy \(6a,2b,a+b+c\) và \(d\)là số nguyên

31 tháng 5 2017

Vì p(x) \(⋮\)5 với mọi x

=> Với x =5 => ax3 +bx2 + cx \(⋮\)5 mà p(x)\(⋮\)5 => d \(⋮\)5

=>ax3 +bx2 + cx \(⋮\) với mọi x

tương tự trên => lần lượt c ,b , a \(⋮\)5

=> dpcm

15 tháng 10 2018

ko  biet ban 

15 tháng 10 2018

\(a)\)\(5x^3-7x^2+4x-2=0\)

\(\Leftrightarrow\)\(\left(5x^3-5x^2\right)-\left(2x^2-4x+2\right)=0\)

\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(\sqrt{2}x-\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\)\(5x^2\left(x-1\right)-2\left(x-1\right)^2=0\)

\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(2x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(5x^2-2x+2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\5x^2-2x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\5x^2-2x+2=0\end{cases}}}\)

Vậy \(x=1\) là một trong các nghiệm của đa thức \(f\left(x\right)\)

Hok tốt nhé eiu :> 

AH
Akai Haruma
Giáo viên
1 tháng 4 2019

Lời giải:
Bạn hiểu rằng đa thức $f(x)$ có nghiệm $x=a$ khi mà $f(a)=0$

a) Theo đề bài:

\(f(x)=3x^3+4x^2+2x+1\)

\(\Rightarrow f(-1)=3(-1)^3+4(-1)^2+2(-1)+1=0\)

Do đó $x=-1$ là một nghiệm của $f(x)$ (đpcm)

b)

\(f(x)=ax^3+bx^2+cx+d\) nhận $x=-1$ là nghiệm khi và chỉ khi :

\(f(-1)=a(-1)^3+b(-1)^2+c(-1)+d=0\)

\(\Leftrightarrow -a+b-c+d=0\)

\(\Leftrightarrow a+c=b+d\) (đpcm)

31 tháng 3 2019

ài 2:
a) f(1) = a + b + c + d = 0
Vậy 1 là 1 trong các nghiệm của f(x)
b) f(x)=5x3−7x2+4x−2f(x)=5x3−7x2+4x−2 có tổng các hệ số là : 5 - 7 + 4 - 2 = 0
Theo a) \Rightarrow 1 là 1 trong các nghiệm của f(x).
Bài 3:
f(x)=3x3+4x2+2x+1f(x)=3x3+4x2+2x+1
→f(−1)=−3+4−2+1=0→f(−1)=−3+4−2+1=0
Vậy (-1) là một trong các nghiệm của f(x).

4 tháng 4 2017

Theo bài ra ta có:

\(P(0)=d\\P(1)=a+b+c+d\\P(-1)=-a+b-c+d\\P(2)=8a+4b+2c+d\)

đều là các số chia hết cho 5

Từ đó ta thu được:

- \(d=P(0)\ \vdots \ 5\)

- \(2b=P(1)+P(-1)-2d\ \vdots \ 5 \ \Rightarrow b\ \vdots \ 5\)

- \(6a=P(2)+2P(-1)-5b-3d\ \vdots \ 5 \ \Rightarrow \ a\ \vdots \ 5 \)

- \(c=P(1)-a-b-d \ \vdots \ 5\)

Ta được điều phải chứng minh!

5 tháng 4 2017

em cảm ơn thầy ạ!