Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi
bài nay đơn giàn thôi bạn chỉ can thay thẳng x=1 vào đa thức P(x) cứ lam theo thế là ra
cho \(f\left(x\right)=ax^3+bx^2+cx+d\)biết \(a+c=b+d\).Chứng minh \(x=-1\)là nghiệm của đa thức f(x)
\(a)\)\(5x^3-7x^2+4x-2=0\)
\(\Leftrightarrow\)\(\left(5x^3-5x^2\right)-\left(2x^2-4x+2\right)=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(\sqrt{2}x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-2\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(2x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(5x^2-2x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\5x^2-2x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\5x^2-2x+2=0\end{cases}}}\)
Vậy \(x=1\) là một trong các nghiệm của đa thức \(f\left(x\right)\)
Hok tốt nhé eiu :>
Bài 1 : k bt làm
Bài 2 :
Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x
+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)
\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)
\(\Leftrightarrow0=7.P\left(2\right)\)
\(\Leftrightarrow P\left(2\right)=0\)
\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)
+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)
\(\Leftrightarrow P\left(-1\right)=0\)
\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm
nghiệm của đa thức xác định đa thức đó bằng 0
0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-
Lời giải:
Bạn hiểu rằng đa thức $f(x)$ có nghiệm $x=a$ khi mà $f(a)=0$
a) Theo đề bài:
\(f(x)=3x^3+4x^2+2x+1\)
\(\Rightarrow f(-1)=3(-1)^3+4(-1)^2+2(-1)+1=0\)
Do đó $x=-1$ là một nghiệm của $f(x)$ (đpcm)
b)
\(f(x)=ax^3+bx^2+cx+d\) nhận $x=-1$ là nghiệm khi và chỉ khi :
\(f(-1)=a(-1)^3+b(-1)^2+c(-1)+d=0\)
\(\Leftrightarrow -a+b-c+d=0\)
\(\Leftrightarrow a+c=b+d\) (đpcm)
ài 2:
a) f(1) = a + b + c + d = 0
Vậy 1 là 1 trong các nghiệm của f(x)
b) f(x)=5x3−7x2+4x−2f(x)=5x3−7x2+4x−2 có tổng các hệ số là : 5 - 7 + 4 - 2 = 0
Theo a) \Rightarrow 1 là 1 trong các nghiệm của f(x).
Bài 3:
f(x)=3x3+4x2+2x+1f(x)=3x3+4x2+2x+1
→f(−1)=−3+4−2+1=0→f(−1)=−3+4−2+1=0
Vậy (-1) là một trong các nghiệm của f(x).
\(Q\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d\)
\(=-a+b-c+d\)
\(=b+d-c-a=0.\) ( vì a+c=b+d ) < đpcm >
lợi đúng rồi mà quay qua hỏi