\(f\left(x\right)=\left(5m+2n-1\right)x+2m-5n+15\) 

Tính m và n khi  

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Ta thấy \(2m^2-5m+7=2\left(m^2-\frac{5}{2}m+\frac{25}{16}\right)+\frac{31}{8}=2\left(m-\frac{5}{4}\right)^2+\frac{31}{8}>0\)

Vậy nên hàm số \(y=f\left(x\right)\) là hàm số đồng biến.

Ta thấy \(1-\sqrt{2015}>1-\sqrt{2017}\Rightarrow f\left(1-\sqrt{2015}\right)>f\left(1-\sqrt{2017}\right)\)

NV
13 tháng 6 2019

Để đa thức bằng 0 với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}3m-2n-1=0\\2m+n-10=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=3\\n=4\end{matrix}\right.\)

\(\Rightarrow m+2n=11\)

12 tháng 9 2017

Ta có \(f\left(1\right)+f\left(10\right)+f\left(100\right)=1+a+b+100+10a+b+10000+100a+b\)

\(=10101+111a+3b\)

Tương tự \(G\left(1\right)+G\left(10\right)+G\left(100\right)=10101+111m+3n\)

Từ đây ta có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)

Xét \(h\left(x\right)=f\left(x\right)-G\left(x\right)\) , khi đó \(h\left(x_0\right)=f\left(x_0\right)-G\left(x_0\right)\)

\(=ax_0+b-mx_0-n=\left(a-m\right)x_0+\left(b-n\right)\)

Để \(h\left(x_0\right)=0\Rightarrow\left(a-m\right)x_0+\left(b-n\right)=0\Rightarrow3\left(a-m\right)x_0+3\left(b-n\right)=0\)

Ta đã có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)

Vậy nên \(3x_0=111\Rightarrow x_0=37\)

Tóm lại \(f\left(37\right)=G\left(37\right)\)

20 tháng 10 2019

1,Giải sử x0 là nghiệm chung của hai pt

Ta có hệ: \(\left\{{}\begin{matrix}x_0^2-\left(m+2\right)x_0+3m-1=0\left(1\right)\\x_0^2-\left(2m+3\right)x_0+3m+3=0\end{matrix}\right.\)

=> \(\left(2m+3\right)x_0-\left(m+2\right)x_0+3m-1-3m-3=0\)

<=> \(x_0\left(m+1\right)-4=0\)

Do hai pt có nghiệm chung => \(x_0\in R\) => \(m\ne-1\)

<=> \(x_0=\frac{4}{m+1}\) thay vào (1) có

\(\frac{16}{\left(m+1\right)^2}-\frac{\left(m+2\right).4}{m+1}+3m-1=0\)

<=> \(\frac{16}{\left(m+1\right)^2}-\frac{4\left(m+2\right)\left(m+1\right)}{\left(m+1\right)^2}+\frac{3m\left(m+1\right)^2}{\left(m+1\right)^2}-\frac{\left(m+1\right)^2}{\left(m+1\right)^2}=0\)

<=> \(16-4\left(m^2+3m+2\right)+3m\left(m^2+2m+1\right)-\left(m^2+2m+1\right)=0\)

<=> \(16-4m^2-12m-8+3m^3+6m^2+3m-m^2-2m-1=0\)

<=> \(3m^3+m^2-11m+7=0\)

<=> \(3m^3-3m^2+4m^2-4m-7m+7=0\)

<=>\(3m^2\left(m-1\right)+4m\left(m-1\right)-7\left(m-1\right)=0\)

<=> \(\left(m-1\right)\left(3m^2+4m-7\right)=0\)

<=> \(\left(m-1\right)^2\left(3m+7\right)=0\)

<=> \(\left[{}\begin{matrix}m=1\\m=-\frac{7}{3}\end{matrix}\right.\)

20 tháng 10 2019

@@ cái gì vậy!!