Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biết đa thức f(x)=ax3+bx2+cx+d(với a khác 0) có 2 nghiệm 1 và-1. Tìm nghiệm thứ ba của đa thức f(x)?
Theo đề:
f(1)=a+b+c+d=0
f(-1)=-a+b-c+d=0
=>f(1)+f(-1)=2(b+d)=0 => b+d = 0 => b=-d (1)
f(1)-f(-1)=2(a+c)=0 => a+c=0 => a=-c(2)
Thay (1),(2) vào pt:
f(x)= -cx^3-dx^2+cx+d = cx(1 - x^2) + d(1 - x^2) = (cx + d)(1 - x)(1 + x) =0
=> x=1,x=-1, x= -d/c
Vậy nghiệm thứ 3 của f(x) là x= -d/c
tích của 2 số chẵn (hay một số chẵn) là một số chẵn ta có : (8.a)là một số chẵn =>8a-9b là một số chẵn=> A là một số chẵn (2a) là một số chẵn => 3c-2a là một số chẵn =.>B là một số chẵn =>A x B có tích là một số chẵn (1) lại có : A x B x C=(A xB) x C nên từ (1) =>A x B x C là một số chẵn (đpcm)
Ta có: 2a+c=0
Q(x)=ax2+bx+c
⇒Q(1)=a+b+c ⇔ Q(1) x 2 =2a+2b+2c
Q(-2)=4a-2b+c
⇒Q(-2) + 2Q(1)=4a-2b+c+2a+2b+2c=6a+3c=3(2a+c)=0
⇒Q(-2) và 2Q(1) trái dấu
⇒Q(-2).2.Q(1)≤0 ⇔Q(-2).Q(1)≤0 (ĐPCM)