Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(-1)= (-1)4 + 2.(-1)2 + 1 P(1) = 14 + 2.12 + 1
= 1 + 2.1 + 1 = 1 + 2.1 + 1
= 1 + 2 + 1 = 4 = 1 + 2 + 1 = 4
Q(-2) = (-2)4 + 4.(-2)3 + 2.(-2)2 - 4.(-2) Q(-1) = (-1)4 + 4.(-1)3 + 2.(-1)2 - 4.(-1)
= 16 + 4.(-8) + 2.4 - 4.(-2) = 1 + 4.(-1) + 2.1 - 4.(-1)
=16 + (-32) + 8 - (-8) =1 + (-4) + 2 - (-4)
= 0 = 11
+ P(x) = x4 + 2x2 + 1
P(-1) = (-1)4 + 2(-1)2 + 1 = 1 + 2 + 1 = 4
P(1) = 14 + 2.12 + 1 = 1 + 2 + 1 = 4
+ Q(x) = x4 + 4x3 + 2x2 - 4x + 1
Q(-2) = (-2)4 + 4(-2)3 + 2(-2)2 - 4(-2) + 1 = 16 - 32 + 8 + 8 + 1 = 1
Q(-1) = (-1)4 + 4(-1)3 + 2(-1)2 - 4(-1) + 1 = 1 - 4 + 2 + 4 + 1 = 4
Ta có: P(x) = x4 + 2x2 + 1
=>P(-1) = 14 + 2.12 + 1
= 1 + 2 + 1
= 4
=>P(1/2) = (1/2)4 + 2.(1/2)2 + 1
= 1/16 + 2. 1/4 +1
=1/16 + 1/2 + 1
=25/16
Ta có : Q(x) = x4 + 4x3 + 2x2 - 4x + 1
=>Q(-2)= (-2)4 + 4.(-2)3 + 2.(-2)2 - 4.(-2) + 1
= 16 - 4.8 + 2.4 + 8 + 1
= 16 - 32 + 8 + 8 + 1
= 1
=>Q(1) = 14 +4.13 +2.12 - 4.1 + 1
=1+4+2-4+1
=4
\(P\left(x\right)+Q\left(x\right)=\left(2x^4+x^3-4x+5\right)+\left(x^4+3x^3+2x-1\right)\)
\(=2x^4+x^3-4x+5+x^4+3x^3+2x-1\)
\(=\left(2x^4+x^4\right)+\left(x^3+3x^3\right)+\left(-4x+2x\right)+\left(5-1\right)\)
\(=3x^4+4x^3-2x+4\)
\(R\left(x\right)+P\left(x\right)=x^4-2x^2+1\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-P\left(x\right)\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-\left(2x^4+x^3-4x+5\right)\)
\(\Rightarrow R\left(x\right)=x^4-2x^2+1-2x^4-x^3+4x-5\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^4\right)+\left(-2x^2\right)+\left(1-5\right)+\left(-x^3\right)+4x\)
\(\Rightarrow R\left(x\right)=-x^4-2x^2-4-x^3+4x\)
`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)
`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`
`= x^4+3x^3+x^2+2x+2`
`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)
`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`
`= x^4+x^3+2x^2+2x+1`
`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`
`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`
`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`
`= 2x^4+4x^3+3x^2+4x+3`
`@`\(\text{dn inactive.}\)
P(x)=x^4+3x^3+x^2+2x+2
Q(x)=x^4+x^3+2x^2+2x+1
P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3
Ta có: \(P\left(x\right)=-5x^4+3x^3-2x^2+\dfrac{1}{2}x-1\)
\(Q\left(x\right)=6x^4+3x^3-4x^2+\dfrac{1}{2}x-4\)
\(\Rightarrow A\left(x\right)=P\left(x\right)-Q\left(x\right)=-11x^4+2x^2+3\)
\(P\left(-1\right)=\left(-1\right)^4+2\cdot\left(-1\right)^2+1=1+2+1=4\)
\(P\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^4+2\cdot\left(\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{9}{16}\)
\(Q\left(-2\right)=\left(-2\right)^4+4\cdot\left(-2\right)^3+2\cdot\left(-2\right)^2-4\cdot\left(-2\right)+1=16-32+8+8+1=1\)