K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Ta có P(x)=x^2+2x+x+2+3

                =x(2+x)+x+2+3

                =(x+2)^2+3

Mà (x+2)^2>=0=>P(x)>0

=> P(x) vô nghiệm

16 tháng 3 2017

nghiệm =1

cách giải là bấm trên máy tính như sau:

x3-3x+2 xong bấm alpha + calc + 0

bấm tiếp shift+calc rồi =

chờ 1 tí sẽ ra nghiệm

17 tháng 8 2019

\(x^2+x+\frac{1}{2}\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}>;0\forall x\)

Vậy đa thức trên vô nghiệm

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

10 tháng 7 2020

\(\left(x+1\right)^2=x^2+2\cdot x\cdot1+1^2=x^2+2x+1=VP\left(đpcm\right)\)

\(P\left(x\right)=x^2+2x+4\)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot4=4-16=-12\)

\(\Delta< 0\)=> Đa thức vô nghiệm ( đpcm ) 

\(\left(x+1\right)^2=\left(x+1\right)\left(x+1\right)=x^2+x+x+1=x^2+2x+1\)

=>  \(x^2+2x+1=x^2+2x+1\left(\text{đ}pcm\right)\)

Ta có : \(P\left(x\right)=x^2+2x+4=0\)

\(\hept{\begin{cases}x^2\ge0\\2x\ge0\\4>0\end{cases}\Rightarrow vonghiem}\)

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

Ta có: - x2 - 1 = 0

           -x2      = 1

           -1        = x2

             x2        =  -1

vì không có số nào bình phương bằng số âm nên đa thức -x2-1 không có nghiệm

K CHO MIK NHA

6 tháng 5 2018

Đặt \(f\left(x\right)=-x^2-1=-\left(x^2+1\right)\)

Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2+1>0\)với mọi giá trị của x

=> \(-\left(x^2+1\right)< 0\)với mọi giá trị của x

Vậy \(f\left(x\right)=-x^2-1\)vô nghiệm (đpcm)

Cách bạn làm ở trên đúng.

30 tháng 4 2021

Thay x = 0 vào đa thức P(x) ta được : 

\(P\left(0\right)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0\)* đúng * (1) 

tức là x = 0 là nghiệm của đa thức P(x) 

Thay x = 0 vào đa thức Q(x) ta được :

\(Q\left(0\right)=3.0^4+3.0^2-\frac{1}{4}-4.0^3-2.0^2=-\frac{1}{4}\)* đúng * (2) 

tức là x = 0 ko phải nghiệm của đa thức Q(x) 

Từ (1) ; (2) ta có đpcm 

a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)

                    =6x3+3x2-4x+14

b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x

=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x

c/ P(x)=-6x=0

=> x=0 là nghiệm đa thức P(x)

d/ Ta có: x2+4x+5

=x.x+2x+2x+2.2+1

=x(x+2)+2(x+2)+1

=(x+2)(x+2)+1

=(x+2)2+1

Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)

=> Đa thức trên vô nghiệm.