K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

\(P\left(x\right)=5x^3+4x^2+3x+2=\left(4x^3+4x^2+4x+2\right)+x^3-x.\)

Do \(4x^3+4x^2+4x+2⋮2\),lại có \(x^3-x=x\left(x^2-1\right)=\left(x-1\right)x\left(x+1\right)⋮2\)

\(=>P\left(x\right)⋮2\)

=>P(x) là số chẵn với mọi số tự nhiên x

=>không tồn tại

21 tháng 4 2017

Không tồn tại.

21 tháng 4 2017

Bạn ơi chứng minh thế nào vậy ạ?

3 tháng 5 2016

Xét 2 trường hợp.

th1 -  Với x là số lẻ:

Ta có: \(5^3+4x^2+3x+2\) = lẻ + chẵn + lẻ + chẵn = chẵn

Vậy với x là số lẻ thì P(x) là chẵn  

th2 - Với x là chẵn:

Ta có: \(5^3+4x^2+3x+2\) = lẻ + chẵn + chẵn + chẵn = lẻ

Vậy với x là số chẵn thì P(x) là lẻ 

       Kết luận: Có tồn tại một số tự nhiên x để đa thức P(x) có giá trị là một số lẻ

a) thu gọn đi rùi tìm ngiệm nhưng chắc đa thức P(x) ko có nghiệm đâu!!!!

nghĩ thui

16 tháng 4 2016

bạn làm cho mình câu b nhé