Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
7x(2x-1)=14x2-7x
2
a. x2+2x=x(x+2)
b.x2-xy+3x-3y
=x(x-y)+3(x-y)
=(x+3)(x-y)
Câu 2:
1. 2x/2x-5 - 5/2x-5
=2x-5/2x-5
=1
2. (6x3-7x2-x+2) : (x-1)=6x2-x-2
b1:
câu a,f áp dụng a2-b2=(a-b)(a+b)
câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)
câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)
câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)
câu g xem lại đề
4. (x + y + z)3 - x3 - y3 - z3 = x3 + y3 + z3 + 3(x + y)(y + z)(x + z) - x3 - y3 - z3
= 3(x + y)(y + z)(x + z)
2. x8 + x + 1 = (x8 - x5) + (x5 - x2) + (x2 + x + 1 )
= x5(x3 - 1) + x2(x3 - 1) + (x2 + x + 1 )
= x5(x - 1)(x2 + x + 1 ) + x2(x - 1)(x2 + x + 1 ) + (x2 + x + 1 )
= (x2 + x + 1 )[ x5(x - 1) + x2(x - 1) + 1]
= (x2 + x + 1 )(x6 - x5 + x3 - x2 + 1)
Câu a :
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Câu b :
\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+26=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\rightarrow x^3-2x^2+4x+2x^2-4x^2+8-x^3-2x=15\)
\(\rightarrow2x+8=15\)
\(\rightarrow2x=15-8=7\)
\(\Rightarrow x=7:2=3,5\)
Do ko có t/gian nên ko kịp lm câu b
a, P(x)=2x4-6x3-x3+3x2-5x2+15x-2x+6
=2x3(x-3)-x2(x-3)-5x(x-3)-2(x-3)
=(x-3)(2x3-x2-5x-2)
=(x-3)(2x3-4x2+3x2-6x+x-2)
=(x-3)[2x2(x-2)+3x(x-2)+(x-2)]
=(x-3)(x-2)(2x2+3x+1)=(x-3)(x-2)(x+1)(2x+1)
b,P(x)=(x-3)(x-2)(x+1)(2x-2+3)
=(x-3)(x-2)(x+1)[2(x-1)+3]
=2(x-3)(x-2)(x-1)(x+1)+3(x-3)(x-2)(x+1)
vì x-3,x-2 là 2 SN liên tiếp nên tích của chúng chia hết cho 2 => (x-3)(x-2)(x+1) chia hết cho 2
=>3(x-3)(x-2)(x+1) chia hết cho 6
lập luận đc (x-3)(x-2)(x-1) là tích 3 SN liên tiếp nên chia hết cho 2 và 3 =>(x-3)(x-2)(x-1) cũng chia hết cho 6
Tóm lại P(x) chia hết cho 6 với mọi x \(\in\) Z