K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

a, P(x)=2x4-6x3-x3+3x2-5x2+15x-2x+6

=2x3(x-3)-x2(x-3)-5x(x-3)-2(x-3)

=(x-3)(2x3-x2-5x-2)

=(x-3)(2x3-4x2+3x2-6x+x-2)

=(x-3)[2x2(x-2)+3x(x-2)+(x-2)]

=(x-3)(x-2)(2x2+3x+1)=(x-3)(x-2)(x+1)(2x+1)

b,P(x)=(x-3)(x-2)(x+1)(2x-2+3)

=(x-3)(x-2)(x+1)[2(x-1)+3]

=2(x-3)(x-2)(x-1)(x+1)+3(x-3)(x-2)(x+1)

vì x-3,x-2 là 2 SN liên tiếp nên tích của chúng chia hết cho 2 => (x-3)(x-2)(x+1) chia hết cho 2

=>3(x-3)(x-2)(x+1) chia hết cho 6

lập luận đc (x-3)(x-2)(x-1) là tích 3 SN liên tiếp nên chia hết cho 2 và 3 =>(x-3)(x-2)(x-1) cũng chia hết cho 6 

Tóm lại P(x) chia hết cho 6 với mọi x \(\in\) Z 

21 tháng 4 2020

1.

7x(2x-1)=14x2-7x

2

a. x2+2x=x(x+2)

b.x2-xy+3x-3y

=x(x-y)+3(x-y)

=(x+3)(x-y)

Câu 2:

 1. 2x/2x-5 -  5/2x-5

=2x-5/2x-5

=1

2. (6x3-7x2-x+2) : (x-1)=6x2-x-2

4 tháng 8 2016
2(x+1)(x+5)(x^2+6x+19)
17 tháng 6 2017

b1:

câu a,f áp dụng a2-b2=(a-b)(a+b)

câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)

câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)

câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)

câu g xem lại đề

17 tháng 6 2017

b2:

\(f\left(x;y\right)=x^2+y^2-6x+5y+9=\left(x^2-6x+9\right)+\left(y^2+5y+\frac{25}{4}\right)-\frac{25}{4}\)

\(=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)

Dấu "=" xảy ra khi x=3 và y=-5/2

câu c làm tương tự

14 tháng 12 2016

4. (x + y + z)3 - x3 - y3 - z3 =  x3 + y3 + z+ 3(x + y)(y + z)(x + z) - x3 - y3 - z3 

                                        =   3(x + y)(y + z)(x + z)

14 tháng 12 2016

2. x+ x + 1 = (x8 - x5) + (x5 - x2) + (x2 + x + 1 )

                   = x5(x3 - 1) + x2(x3 - 1) + (x2 + x + 1 )

                   = x5(x - 1)(x2 + x + 1 ) + x2(x - 1)(x2 + x + 1 ) + (x2 + x + 1 )

                   = (x2 + x + 1 )[ x5(x - 1) + x2(x - 1) + 1]

                   = (x2 + x + 1 )(x6 - x + x - x2 + 1)

                   

17 tháng 7 2018

Câu a :

\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow-2x=7\)

\(\Leftrightarrow x=-\dfrac{7}{2}\)

Câu b :

\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)

\(\Leftrightarrow3x^2+26x=0\)

\(\Leftrightarrow x\left(3x+26\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+26=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)

19 tháng 9 2018

a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\rightarrow x^3-2x^2+4x+2x^2-4x^2+8-x^3-2x=15\)

\(\rightarrow2x+8=15\)

\(\rightarrow2x=15-8=7\)

\(\Rightarrow x=7:2=3,5\)

Do ko có t/gian nên ko kịp lm câu b

Bài 1. Thực hiện các phép tính sau :a) \(\frac{x+3}{x+1}-\frac{x-3}{x^2-1}-\frac{2x-1}{x-1}\)b) \(\frac{1}{x\left(x+y\right)}+\frac{1}{x\left(x-y\right)}+\frac{1}{y\left(y+x\right)}+\frac{1}{y\left(y-x\right)}\)Bài 2. Phân tích đa thức sau thành nhân tử : P(x) = (x + a)(x + 2a)(x + 3a)(x + 4a) - 15a4Bài 3. Giải phương trình : x4 + 3x3 + 4x2 + 3x + 1 = 0Bài 4. Tìm GTLN và GTNN của biểu thức : \(A=\frac{3-4x}{x^2+1}\)Bài 5. Cho hình thang ABCD (AB // CD)....
Đọc tiếp

Bài 1. Thực hiện các phép tính sau :

a) \(\frac{x+3}{x+1}-\frac{x-3}{x^2-1}-\frac{2x-1}{x-1}\)

b) \(\frac{1}{x\left(x+y\right)}+\frac{1}{x\left(x-y\right)}+\frac{1}{y\left(y+x\right)}+\frac{1}{y\left(y-x\right)}\)

Bài 2. Phân tích đa thức sau thành nhân tử : P(x) = (x + a)(x + 2a)(x + 3a)(x + 4a) - 15a4

Bài 3. Giải phương trình : x4 + 3x3 + 4x2 + 3x + 1 = 0

Bài 4. Tìm GTLN và GTNN của biểu thức : \(A=\frac{3-4x}{x^2+1}\)

Bài 5. Cho hình thang ABCD (AB // CD). Các tia phân giác của góc A và góc D cắt nhau ở I; các tia phân giác của góc B và góc C cắt nhau ở J. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh bốn điểm M, N, I, J thẳng hàng.

Bài 6. Cho hình bình hành ABCD. Trên các cạnh AB, BC, CD và DA ta dựng về phía ngoài các hình vuông lần lượt có tâm là O1, O2, O3, O4. Chứng minh tứ giác O1O2O3O4 là hình vuông.

(Các bạn có thể giải bất kì câu nào mà các bạn muốn)

0