Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=x^4y^3\left(a-2\right)+7xy^2+bx^3y^4+4y^3\)
Vì N có bậc là 3 nên \(\left\{{}\begin{matrix}a-2=0\\b=0\end{matrix}\right.\Leftrightarrow\left(a,b\right)=\left(2;0\right)\)
Ta có: \(4x^5y^2-3x^3y+7x^3y+ax^5y^2\)
\(=\left(4+a\right)x^5y^2+\left(-3+7\right)x^3y\)
\(=\left(4+a\right)x^5y^2+4x^3y\)
Vì đa thức có bậc là 4
mà \(x^5y^2\)có bậc là 7
nên : \(4+a=0\)<=> a = -4
Khi đó đa thức bằng: \(4x^3y\) có bậc là 4
Vậy a = -4
Nguyễn Linh Chi hôm qua cô con HD trình bày kiểu này :
\(4x^5y^2-3x^3y+7x^3y+ax^5y^2\)
\(=\left(4x^5y^2+ax^5y^2\right)+\left(-3x^3y+7x^3y\right)\)
\(=\left(4+a\right)x^5y^2+4x^3y\)
đến đây ta nhận thấy 4x3y có số bậc là 4 . Vì vậy (4+a)x5y2 không tồn tại hay 4+a=0
\(4+a=0\Rightarrow a=-4\)
Mình sửa lại đề tí, ax5x2 chắc gõ nhầm :)
ax5y2 - 3x3y + 7x3y + ax5y2
= 2ax5y2 + 4x3y
Ta có: 2ax5y2 có bậc là 7, 4x3y có bậc là 4
Mà bậc của đa thức trên là 4
\(\Rightarrow\) 2ax5y2 = 0 \(\Rightarrow\) a = 0
Vậy a = 0 thì đa thức ax5y2 - 3x3y + 7x3y + ax5y2 có bậc là 4
Chúc bn học tốt!
\(P=ax^4y^3+10xy^2+4y^3-2x^4y^3-3xy^2+bx^3y^4\)
\(=\left(ax^4y^3-2x^4y^3\right)+bx^3y^4+7xy^2+4y^3\)
\(=\left(a-2\right)x^4y^3+bx^3y^4+7xy^2+4y^3\)
Ta thấy: \(4+3=3+4=7\)
mà P phải có bậc là 3 \(\Rightarrow\hept{\begin{cases}a-2=0\\b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=0\end{cases}}\)
Vậy \(x=2\)và \(b=0\)