K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2020

\(P=ax^4y^3+10xy^2+4y^3-2x^4y^3-3xy^2+bx^3y^4\)

\(=\left(ax^4y^3-2x^4y^3\right)+bx^3y^4+7xy^2+4y^3\)

\(=\left(a-2\right)x^4y^3+bx^3y^4+7xy^2+4y^3\)

Ta thấy: \(4+3=3+4=7\)

mà P phải có bậc là 3 \(\Rightarrow\hept{\begin{cases}a-2=0\\b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=0\end{cases}}\)

Vậy \(x=2\)và \(b=0\)

\(N=x^4y^3\left(a-2\right)+7xy^2+bx^3y^4+4y^3\)

Vì N có bậc là 3 nên \(\left\{{}\begin{matrix}a-2=0\\b=0\end{matrix}\right.\Leftrightarrow\left(a,b\right)=\left(2;0\right)\)

28 tháng 4 2020

Ta có: \(4x^5y^2-3x^3y+7x^3y+ax^5y^2\)

\(=\left(4+a\right)x^5y^2+\left(-3+7\right)x^3y\)

\(=\left(4+a\right)x^5y^2+4x^3y\)

Vì đa thức có bậc là 4 

mà \(x^5y^2\)có bậc là 7 

nên : \(4+a=0\)<=> a = -4 

Khi đó đa thức bằng: \(4x^3y\) có bậc là 4 

Vậy a = -4

30 tháng 4 2020

Nguyễn Linh Chi hôm qua cô con HD trình bày kiểu này : 

\(4x^5y^2-3x^3y+7x^3y+ax^5y^2\)

\(=\left(4x^5y^2+ax^5y^2\right)+\left(-3x^3y+7x^3y\right)\)

\(=\left(4+a\right)x^5y^2+4x^3y\)

đến đây ta nhận thấy 4x3y có số bậc là 4 . Vì vậy (4+a)x5y2 không tồn tại hay 4+a=0 

\(4+a=0\Rightarrow a=-4\)

25 tháng 4 2020

giúp mình với

28 tháng 3 2022

`Answer:`

\(P=2015x^3y^2-5x^2y+8x^2y+ax^3y^2\)

Ta thấy đa thức `P` luôn có bậc là `5` nên không có giá trị nào của `a` để cho `P` có bậc là `3`

27 tháng 3 2019

2/ Vì Q có bậc 3 nên \(ax^5y^2-2x^5y^2+bxy^4=\left(a-2\right)x^5y^2+bxy^4\) có hệ số =0

Vậy a=2; b=0.

7 tháng 5 2020

Mình sửa lại đề tí, ax5x2 chắc gõ nhầm :)

ax5y2 - 3x3y + 7x3y + ax5y2

= 2ax5y2 + 4x3y

Ta có: 2ax5y2 có bậc là 7, 4x3y có bậc là 4

Mà bậc của đa thức trên là 4

\(\Rightarrow\) 2ax5y2 = 0 \(\Rightarrow\) a = 0

Vậy a = 0 thì đa thức ax5y2 - 3x3y + 7x3y + ax5y2 có bậc là 4

Chúc bn học tốt!

7 tháng 5 2020

Ukm. Sorry bạn, bài 1 mình ko biết làm

\n