Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: -1 là nghiệm của M(y)
=> a.(-1)^2 + b. (-1) +c = 0
a - b +c =0 => a - ( b-c) =0 => a = b-c
mà 5a + b +2c =0
=> a - b+ c = 5a +b+2c = 0
( b-c) + b +c = 5.( b-c) + b+ 2c =0
b-c + b+ c = 5b - 5c + b + 2c =0
=> 2c = 6b - 3c =0
=> 2c =3. ( 2b - c) =0
=> 2c =0 => c =0
=> 3 .( 2b - c) = 0 => 2b -c =0 => 2b - 0 =0 => 2b =0 => b =0
mà a = b-c
=> a = 0-0
=> a =0
KL: a =b=c =0
mk nghĩ như z đó!!!
a) Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)
\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)
\(=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)
Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)
b) Sửa đề:
Biết \(5a+b+2c=0\)
Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)
\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)
\(=5a+b+2c=0\)
\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)
\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)
Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)
Ta có: f(0)=1
<=> ax2 +bx+c=1
<=> c=1
f(1)=0
<=>ax2 +bx+c=0
<=> a+b+c=0
mà c=1
=>a+b=-1(1)
f(-1)=10
<=> ax2 +bx +c=10
<=>a-b+c=10
mà c=1
=>a-b=9(2)
Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9
<=> 2b=-10
<=> b=-5
=>a=4
Vậy a=4,b=-5,c=1
Câu 3:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)
=>a=-3; b=-9
Lời giải:
Ta có:
$f(-1)=a-b+c$
$f(2)=4a+2b+c$
Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$
$\Rightarrow f(-1)=-f(2)$
$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)
a)p(x)=1^2+m*1-9
=1+m*(-8)
m=-7
đây là cách của trường mình nếu có sai mong bạn thông cảm
còn câu b,c bạn có thể tự thay
Ta có :
M(0) = a.02 + b . 0 + c = c = 0
M(-1) = a . ( -1 )2 + b . ( -1 ) + c = a - b + c = 0 \(\Rightarrow\)a - b = 0 \(\Rightarrow\)a = b
Mâ 5a + b + 2c = 0
hay 6a + 2c = 0
\(\Rightarrow\)6a = 0
\(\Rightarrow\)a = 0
Vậy a = b = c = 0
ta có: 0 là nghiệm của M(y)
=> a.0^2 + b.0 + c =0
=> 0+0+ c =0
=> c =0
ta có: -1 là nghiệm của M(y)
=> a.(-1)^2 + b.(-1) +c = 0
=> a -b + c =0
=> a -b + 0 =0
=> a -b =0 => a =b
mà 5a + b + 2c =0
=> 5a + b + 2c = a- b +c =0
=> b+ b+ 2.0 = b -b + 0 =0
=> 2b =0
=> b =0
=> a=b=0
KL: a=b=c 0
r đó!