K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

hình như đề sai rùi bn

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

Ta có:

$f(-1)=a-b+c$

$f(2)=4a+2b+c$

Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$

$\Rightarrow f(-1)=-f(2)$

$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)

25 tháng 1 2019

Câu hỏi của thu - Toán lớp 7 - Học toán với OnlineMath Em tham khảo bài làm của bạn Nguyễn Tiến Đạt.

15 tháng 4 2019

f(x)=ax2-2bx+c

=>f(2)=4a-4b+c

=>f(-3)=9a+6b+c

=>f(2)+f(-3)=(4a-4b+c)+(9a+6b+c)=(4a+9a)+(-4b+6b)+(c+c)=13a+2b+2c

Mà theo đề 13a+2b+2c=0

=>f(2)+f(-3)=0

=>f(2) và f(-3) đối nhau

=>f(2).f(-3)</=0

NV
14 tháng 2 2020

\(f\left(-1\right)=a+c-b\)

\(f\left(3\right)=9a+3b+c=10a+2b+2c+b-a-c=b-a-c\)

\(\Rightarrow f\left(-1\right).f\left(3\right)=\left(a+c-b\right)\left(b-a-c\right)=-\left(a+c-b\right)^2\le0\)

15 tháng 3 2017

cho đa thức f(x)=\(ax^2+bx+c\)

ta có:f(0)=c\(\in\)z(1)

f(1)=a+b+c\(\in\)zmà c\(\in\)z

=>a+b\(\in\)z(2)

f(2)=4a+2b+c\(\in z\)mà c\(\in\)z

=>4a+2b\(\in\)z(3)

từ (3)(2)ta có( 4a+2b)-(a+b)=3a-b\(\in\)z

mà 3\(\in\)z=>a-b\(\in\)z(4)

từ (2)(4)=>a+b+a-b=2a\(\in\)

mà 2\(\in\)z=>a\(\in\)z(5)

=>a\(\in\)z mà a-b\(\in\)z=>b\(\in\)z(6)

từ (1)(5)(6)=>f(x) nguyên với mọi giá trị x nguyên

15 tháng 3 2017

chỗ \(\left\{{}\begin{matrix}2a\in Z\\2\in Z\end{matrix}\right.\Rightarrow a\in Z\)

tớ thấy nó sai sai ý. vd như a= 1.5 thây

20 tháng 5 2018

Ta có :

f(1) + f(-2) = a + b + c + 4a - 2b + c = 5a - b + 2c = 0

\(\Rightarrow\)f(1) = -f(-2)

Do đó : f(1) . f(-2) = -[f(-2)]2 \(\le\)0

AH
Akai Haruma
Giáo viên
9 tháng 3 2019

Lời giải:

a)

\(f(1)=a.1^2+b.1+c=a+b+c\)

\(f(2)=a.2^2+b.2+c=4a+2b+c\)

b)

\(f(-2)=a(-2)^2+b(-2)+c=4a-2b+c\)

Do đó:

\(f(1)+f(-2)=(a+b+c)+(4a-2b+c)=5a-b+2c=0\)

\(\Rightarrow f(-2)=-f(1)\)

\(\Rightarrow f(1)f(-2)=-f(1)^2\leq 0\)

c)

Với $a=1,b=2,c=3$ thì :

\(f(x)=x^2+2x+3=x(x+1)+(x+1)+2=(x+1)(x+1)+2\)

\(=(x+1)^2+2\)

\((x+1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow f(x)=(x+1)^2+2\geq 2>0\)

Vậy $f(x)\neq 0$

Do đó $f(x)$ không có nghiệm.