Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$f(-1)=a-b+c$
$f(2)=4a+2b+c$
Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$
$\Rightarrow f(-1)=-f(2)$
$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)
Câu hỏi của thu - Toán lớp 7 - Học toán với OnlineMath Em tham khảo bài làm của bạn Nguyễn Tiến Đạt.
f(x)=ax2-2bx+c
=>f(2)=4a-4b+c
=>f(-3)=9a+6b+c
=>f(2)+f(-3)=(4a-4b+c)+(9a+6b+c)=(4a+9a)+(-4b+6b)+(c+c)=13a+2b+2c
Mà theo đề 13a+2b+2c=0
=>f(2)+f(-3)=0
=>f(2) và f(-3) đối nhau
=>f(2).f(-3)</=0
\(f\left(-1\right)=a+c-b\)
\(f\left(3\right)=9a+3b+c=10a+2b+2c+b-a-c=b-a-c\)
\(\Rightarrow f\left(-1\right).f\left(3\right)=\left(a+c-b\right)\left(b-a-c\right)=-\left(a+c-b\right)^2\le0\)
cho đa thức f(x)=\(ax^2+bx+c\)
ta có:f(0)=c\(\in\)z(1)
f(1)=a+b+c\(\in\)zmà c\(\in\)z
=>a+b\(\in\)z(2)
f(2)=4a+2b+c\(\in z\)mà c\(\in\)z
=>4a+2b\(\in\)z(3)
từ (3)(2)ta có( 4a+2b)-(a+b)=3a-b\(\in\)z
mà 3\(\in\)z=>a-b\(\in\)z(4)
từ (2)(4)=>a+b+a-b=2a\(\in\)
mà 2\(\in\)z=>a\(\in\)z(5)
=>a\(\in\)z mà a-b\(\in\)z=>b\(\in\)z(6)
từ (1)(5)(6)=>f(x) nguyên với mọi giá trị x nguyên
chỗ \(\left\{{}\begin{matrix}2a\in Z\\2\in Z\end{matrix}\right.\Rightarrow a\in Z\)
tớ thấy nó sai sai ý. vd như a= 1.5 thây
Ta có :
f(1) + f(-2) = a + b + c + 4a - 2b + c = 5a - b + 2c = 0
\(\Rightarrow\)f(1) = -f(-2)
Do đó : f(1) . f(-2) = -[f(-2)]2 \(\le\)0
Lời giải:
a)
\(f(1)=a.1^2+b.1+c=a+b+c\)
\(f(2)=a.2^2+b.2+c=4a+2b+c\)
b)
\(f(-2)=a(-2)^2+b(-2)+c=4a-2b+c\)
Do đó:
\(f(1)+f(-2)=(a+b+c)+(4a-2b+c)=5a-b+2c=0\)
\(\Rightarrow f(-2)=-f(1)\)
\(\Rightarrow f(1)f(-2)=-f(1)^2\leq 0\)
c)
Với $a=1,b=2,c=3$ thì :
\(f(x)=x^2+2x+3=x(x+1)+(x+1)+2=(x+1)(x+1)+2\)
\(=(x+1)^2+2\)
Vì \((x+1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow f(x)=(x+1)^2+2\geq 2>0\)
Vậy $f(x)\neq 0$
Do đó $f(x)$ không có nghiệm.