Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phương trình \(x^3-x-1=0\). Giả sử x0 là một nghiệm của phương trình đã cho.
a)Chứng minh rằng x0>0
b)Tính giá trị biểu thức \(P=\frac{x_0^2-1}{x_{0^3}}.\sqrt{2x^2_0+3x_0+2}\)
\(f\left(x_0\right)=ax_0^2+bx_0+c=0\)
\(g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\left(đpcm\right)\)
\(f\left(x1\right)=ax1+b;f\left(x2\right)=ax2+b;f\left(x1+x2\right)=a\left(x1+x2\right)+b\)
f(x1+x2)=ax1+ax2+b=ax1+ax2+2b
=> b=0; mọi a
a: f(x1)+f(x2)=a*x1+a*x2=a(x1+x2)
f(x1+x2)=a*(x1+x2)
=>f(x1)+f(x2)=f(x1+x2)
b: f(kx)=a*kx=ak*x
k*f(x)=k*ax=x*ka
=>f(kx)=k*f(x)
c: f(x1)*f(x2)=f(x1*x2)
=>ax1*ax2=a*(x1*x2)
=>a^2-a=0
=>a=1
\(f\left(x_1\right)=g\left(x_1\right)\Leftrightarrow ax_1+b=cx_1+d\Leftrightarrow\left(a-c\right)x_1=d-b\) (1)
\(f\left(x_2\right)=g\left(x_2\right)\Leftrightarrow ax_2+b=cx_2+d\Leftrightarrow\left(a-c\right)x_2=d-b\)
\(\Rightarrow\left(a-c\right)x_1=\left(a-c\right)x_2\)
\(\Leftrightarrow a-c=0\) (do \(x_1\ne x_2\))
\(\Leftrightarrow a=c\)
Thế vào (1) \(\Rightarrow0.x_1=d-b\Rightarrow d=b\)
\(\Rightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\) \(\Rightarrow f\left(x\right)=g\left(x\right)=ax+b\) với mọi x
đúng mà bn ơi