Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép chia đa thức \(f\left(x\right)\)cho \(g\left(x\right)\)ta được:
\(2x^3-3x^2+ax+b=\left(x^2-x+2\right)\left(2x-1\right)+\left(a-5\right)x+\left(b+2\right)\)
Để \(f\left(x\right)\)chia hết cho \(g\left(x\right)\)thì:
\(\hept{\begin{cases}a-5=0\\b+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\).
Do bậc của đa thức bị chia f( x) là : 3 . Bậc của đa thức chia g(x) là : 2 . Nên bậc của đa thức thương là : 1 . Và có dạng : x + m
Vì phép chia là phép chia hết , ta có :
\(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+m\right)\)
⇔ \(x^3+ax^2+2x+b=x^3+mx^2+x^2+mx+x+m\)
⇔ \(x^3+ax^2+2x+b=x^3+x^2\left(m+1\right)+x\left(m+1\right)+m\)
Đồng nhất hệ số , ta được :
+) m + 1 = 2 ⇔ m = 1
+) m + 1 = a = 2
+) m = b = 1
Vậy ,..............
Lời giải:
Khi \(f(x)=x^4+ax^2+b\) chia hết cho \(g(x)=x^2-3x+2\) thì ta có thể viết $f(x)$ dưới dạng:
\(f(x)=x^4+ax^2+b=(x^2-3x+2)Q(x)\) (trong đó $Q(x)$ là đa thức thương)
\(\Leftrightarrow x^4+ax^2+b=(x-1)(x-2)Q(x)\)
Thay \(x=1\Rightarrow 1+a+b=0(-1).Q(1)=0\Rightarrow a+b=-1\)
Thay \(x=2\Rightarrow 16+4a+b=1.0.Q(2)=0\Rightarrow 4a+b=-16\)
Từ hai điều trên suy ra \(a=-5, b=4\)
Bài 2:
Tách \(x^2-1=(x-1)(x+1)\)
Áp dụng định lý Bezout:
Số dư của \(f(x)=x^{10}+ax^3+b\) khi chia cho \(x-1\) là:
\(f(1)=1+a+b=2.1+1=3\)
\(\Rightarrow a+b=2(1)\)
Số dư của \(f(x)=x^{10}+ax^3+b\) khi chia cho \(x+1\) là:
\(f(-1)=1-a+b=2(-1)+1=-1\)
\(\Rightarrow -a+b=-2(2)\)
Từ \((1),(2)\Rightarrow \left\{\begin{matrix} a=2\\ b=0\end{matrix}\right.\)
Nguyễn Nam Ribi Nkok Ngok Nguyễn Phương Trâm Trần Ngọc Bích
Tương tự: Câu hỏi của Bùi Thị Thu Hồng - Toán lớp 8 | Học trực tuyến