Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x) có hai nghiệm x1, x2 khác nhau => P(x1) = 0 và P(x2) = 0
=> P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x2 khác 0)
Mà P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0
Vậy a = b = 0
P(x) có hai nghiệm x1, x2 khác nhau => P(x1) = 0 và P(x2) = 0
=> P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x2 khác 0)
Mà P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0
Vậy a = b = 0
khi x=0, suy ra: f(0)=0+b=0 suy ra: b=0
khi x=1, suy ra: f(1)=a+b=0
suy ra: a+0=0
suy ra: a=0
vậy khi f(x) có 2 giá trị khác nhau thì a=b=0
Đa thức f(x) có hai giá trị khác nhau là x1 và x2
=> f(x1)=ax1+b=0
và f(x2)=ax2+b=0
=> ax1+b=ax2+b
=> ax1=ax2
=> ax1-ax2=0
=> a(x1-x2)=0
=> a=0 hoặc (x1-x2)=0
Mà x1 và x2 là hai giá trị khác nhau
=>x1 khác x2
=> x1-x2 khác 0
=> a=0
Có ax1+b=0
=> 0x1+b=0+b=0
=> b=0
Vậy ...
Xác định hàm số f(x) thoả mãn các điều kiện : f(0) = 0=> hàm số có dạng f(x)=ax; f(2) = 2016 và f(x1)/x1=f(x2)/x2 với x1 và x2 là hai giá trị bất kì khác 0 của x => 2006/2= ax2/x2=>2006x2=2ax2=>a=2006:2=1003 =>a=1003
cho đa thức f(x)=a4x4+a3x3+a2x2+a1x+a0
biết rằng f(1)=f(-1);f(2)=f(-2)
chứng minh f(x)=f(-x) với mọi x
Cho phương trình \(x^3-x-1=0\). Giả sử x0 là một nghiệm của phương trình đã cho.
a)Chứng minh rằng x0>0
b)Tính giá trị biểu thức \(P=\frac{x_0^2-1}{x_{0^3}}.\sqrt{2x^2_0+3x_0+2}\)
\(f\left(x_0\right)=ax_0^2+bx_0+c=0\)
\(g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\left(đpcm\right)\)
f(1) = f(-1)
=> a4 + a3 + a2 + a1 + a0 = a4 - a3 + a2 - a1 + a0
=> a3 + a1 = - a3 - a1
=> a3 = a1 = 0 hoặc a3 = -a1 (1)
f(2) = f(-2)
=> 16a4 + 8a3 + 4a2 + 2a1 + a0 = 16a4 - 8a3 + 4a2 - 2a1 + a0
=> 8a3 + 2a1 = - 8a3 - 2a1
=> a3 = a1 = 0 hoặc 4a3 = -a1 (2)
(1) và (2) => a3 = a1 = 0
=> f(x) = a4x4 + a2x2+ a0
x4 và x2 là số mũ chẵn
=> x4 = (-x)4 và x2 = (-x)2
=> f(x) = f(-x) với mọi x
Theo mình biết thì cái này là hàm số chẵn.