Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
A B C E
Xét ΔABD và ΔEBD, ta có:
AB=BE ( gt)
Góc ABD= góc EBD ( Vì BD là tia phân giác của góc B)
BD chung
⇒ΔABD=ΔEBD(c-g-c)
b)Vì ΔABD=ΔEBD nên góc BAD= góc BED=90 độ( 2 cạnh tương ứng)
hay DE vuông góc với BC
c) Vì ΔABD=ΔEBD nên DA=DE ( 2 cạnh tương ứng)
Xét ΔADF và ΔEDC ta có:
góc FAD=góc CED(câu b)
AD=ED (cmt)
góc ADF=gócEDC( đối đỉnh)
⇒ΔADF=ΔEDC (g-c-g)
d,Xét ΔDAE và ΔDCF có:
DA=DC
Góc ADE=góc CDF (đối đỉnh)
DE=DF
⇒ΔDAE = ΔDCF (c-g-c)
⇒góc DAE=góc DCF (2 góc tương ứng)
MÀ 2 góc này ở vị trí SLT
⇒AE//CF
Đúg thì k
Mè sai cx k hộ nhen
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Vậy: BC=8cm
-.- LM XOG LỠ PẤM HỦY T~T
A B C D E M N G 1 2
A)THEO ĐỊNH LÝ PYTAGO XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow10^2=6^2+AC^2\)
\(\Rightarrow100=36+AC^2\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
b) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)CÓ
\(\widehat{BAD}=\widehat{BED}=90^o\)
\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)
\(BD\)LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta EBD\)(CH-GN)
=>\(AB=EB\)
=>\(\Delta ABE\)CÂN TẠI B
C) TRONG\(\Delta ABE\)CÓ BM LÀ PHÂN GIÁC
=> BM VỪA LÀ PHÂN GIÁC VỪA LÀ TRUNG TUYẾN
=> AM=ME
VÌ AM=ME (CMT)=> CM LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AEC\)
MÀ \(CG=2GM\)
=> G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)
CÓ EN=NC (GT) =>AN LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta AEC\)
MÀ G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)
=> G NẰM TRÊN ĐƯỜNG TRUNG TUYẾN AN
=> BA ĐIỂM A,G,N THẲNG HÀNG
a: Xet ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: ΔBAD=ΔBED
=>góc BAD=góc BED=90 độ
=>DE vuông góc BC
AD=DE
DE<DC
=>AD<DC
d: góc HAE+góc BEA=90 độ
góc CAE+góc BAE=90 độ
=>góc HAE=góc CAE
=>AE là phân giác của góc HAC
a: BC=10cm
b: Xét ΔBAC vuông tại A và ΔBED vuông tại E có
BC=BD
\(\widehat{EBD}\) chung
Do đó: ΔBAC=ΔBED
c: Ta có: ΔBAC=ΔBED
nên BA=BE
hay ΔBAE cân tại B
Xét ΔBCD có BA/BD=BE/BC
nên AE//DC
a: Xét ΔAEB và ΔAEC có
AE chung
góc BAE=góc CAE
AB=AC
=>ΔAEB=ΔAEC
b: EB=6/2=3cm
=>AE=4cm