K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

a/ ΔABC có: \(AB^2+AC^2=BC^2\) (vì 32 + 42 = 52)

=> ΔABC vuông tại A

b) Ta có: \(\widehat{BAC}+\widehat{BAD}=180^0\) (kề bù)

=> \(\widehat{BAD}=180^0-\widehat{BAC}=180^0-90^0=90^0\)

Xét ΔABC và ΔABD ta có:

AD = AC (GT)

\(\widehat{BAC}=\widehat{BAD}\left(=90^0\right)\)

AB: cạnh chung

=> ΔABC = ΔABD (c - g - c)

=> BC = BD (2 cạnh tương ứng)

=> ΔBCD cân tại B

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

28 tháng 4 2019

Sai đề rùi
Góc ABE ko có cắt BD tại F đc nha!!!

28 tháng 4 2019

làm a b thui

mik ko bít vẽ hk nha :(

a) xét tam giác AIB và tam giác CIE có:

AI = IC  ( BI là đường trung tuyến)

IB = IE ( gt )

góc AIB = góc CIE ( 2 góc đối đỉnh  )

=> tam giác AIB = tam giác CIE ( c.g.c)

b) vì tam giác AIB = tam giác CIE ( cm ý a )

=> góc ECI = IAB = 90'

=> EC vuông góc với AC mà AC vuông góc với AB

=> AB //  CE ( đpcm )

c) vì BC > AB ( trong tam giác vuông, cạnh huyền > cạnh g vuông ) mà AB = CE ( tam giác AIB = tam giác CIE )

=> BC > CE ( đpcm)

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác củaADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,BC, AD. Chứng minh:a) AC là tia phân giác của DAH .b) IH = IKBài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứngminh:a) Chứng minh AB //HKb) Chứng minh KAH...
Đọc tiếp

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
 AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH 
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy

4
24 tháng 4 2020

mik ngu hình lắm xin lỗi nha

24 tháng 4 2020

ngu thì xen zô nói làm j