K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

1/1 . 2 + 1/ 3 . 4 + 1/5 . 6 + ...+ 1/99 . 100 

= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...+ 1/99 - 1/100 

= ( 1 + 1/3 + 1/5 + ...+ 1/99 ) - ( 1/2 + 1/4 + ...+ 1/100 ) 

= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - 2 . ( 1/2 + 1/4 + ...+ 1/100 ) 

= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - ( 1 + 1/2 + ...+ 1/50 ) 

=     1/51 + 1/52 + ...+ 1/100 

Tham khảo nha !!! 

13 tháng 3 2018

\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)   (đpcm)

6 tháng 7 2017

a=\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{100}=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)

=>b/a=2011

6 tháng 7 2017

hình như đề : CMR : \(\frac{b}{a}\)là 1 số nguyên

Ta có :

\(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(a=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(a=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(a=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(b=\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)

\(b=2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)

\(\Rightarrow\frac{b}{a}=\frac{2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}=2011\)là 1 số nguyên ( đpcm )

2 tháng 6 2017

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}\)\(+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)\)\(-\frac{1}{2!}-\frac{1}{3!}-\frac{1}{4!}-...-\frac{1}{100!}\)

\(=1+1+\frac{1}{2!}+...+\frac{1}{98!}-\frac{1}{2!}-\frac{1}{3!}-\frac{1}{4!}-...-\frac{1}{100!}\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

2 tháng 6 2017

\(=1-\frac{1}{2!}+\frac{1}{1!}-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)

\(=2-\frac{1}{99!}-\frac{1}{100!}\)

14 tháng 6 2018

Hướng dẫn

Áp dụng BĐT để giải

~ Ủng hộ nhé

4 tháng 8 2017

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Vậy......

4 tháng 8 2017

\(\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

kb mk nhé các bn

7 tháng 4 2017

Lâm đi là: 35 phút +2 giờ 20phút =2 giờ 55 phút

7 tháng 4 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(A=1-\frac{1}{2017}\)

\(A=\frac{2016}{2017}\)

27 tháng 2 2017

Ta có TQ: (phân số đầu - phân số cuối) : khoảng cách
Áp dụng vào bài toán => (\(\frac{1}{1}\)-\(\frac{1}{100}\)) : 1 =\(\frac{99}{100}\)
lý dó 1 là khoảng cách vì cách lm như sau: 2-1=1
                                                                3-2=1
                                                                   .....
                                                                100-99=1
=> khoảng cách là 1
 Chúc bn hk tốt nhé!!

27 tháng 2 2017

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(1-\frac{1}{100}\)

\(\frac{99}{100}\)