K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

Ta có \(\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}+x\right)=1\Rightarrow\sqrt{x^2+1}-x=\sqrt{y^2+1}+y\)

Tương tự, ta có \(\sqrt{y^2+1}-y=\sqrt{x^2+1}+x\)

Cộng 2 vế, ta có x+y=0

^_^

4 tháng 9 2019

Co \(\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}+x\right)=x^2+1-x^2=1\)   (1)

  va \(\left(\sqrt{y^2+1}-y\right)\left(\sqrt{y^2+1}+y\right)=y^2+1-y^2=1\) (2)

Theo de bai va tu (1) ,(2) =>\(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\) (3)

                                         va \(\sqrt{y^2+1}+y=\sqrt{x^2+1}-x\) (4)

Cong (3) voi (4) ve theo ve duoc \(2\left(x+y\right)=\sqrt{x^2+1}-\sqrt{x^2+1}+\sqrt{y^2+1}-\sqrt{y^2+1}=0\)

                                            Suy ra x+y=0    DPCM

Study well

24 tháng 10 2016

Ta có \(\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)

\(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)

\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\le\sqrt{2}\left(x+y+z+3\right)\le6\sqrt{2}\)

Ta lại có \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\le3\)

Theo đề bài ta có

\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\le6\sqrt{2}+\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le3\sqrt{2}+9\)

Dấu = xảy ra khi x = y = z = 1

5 tháng 2 2020

Có: \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)

\(\Leftrightarrow\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2019\)

\(\Leftrightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow\left[y\left(1+x^2\right)+x\left(1+y^2\right)\right]^2=2018\)

\(\Leftrightarrow y\left(1+x^2\right)+x\left(1+y^2\right)=\sqrt{2018}\)

hay \(A=\sqrt{2018}\)

29 tháng 10 2018

biết làm rồi

30 tháng 10 2018

VẬy bạn giải ra cho mọi người xem được ko?

Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!

22 tháng 7 2019

1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)

\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)

\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)

2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)

\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)

4 tháng 12 2015

cái này chỉ cần nhân liên hợp là ra

4 tháng 12 2015

Nhân biểu thức Liên hợp Quân ơi