Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x-1/2 = y-2/3 = z-3/4 =2x- 2/4 = 3y - 6/9 = 2x + 3y -z - 5/ 9 = 10
=> x = 21 , y = 32 , z = 43
= > x + y + z = 96
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}\frac{3y-6}{9}=\frac{2x+3y-z-5}{9}=10\)
cho các số z,y,z thỏa mãn :\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x+3y-z=95. khi đó x+y+z=
Cho các số x;y;x thỏa mãn: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x+3y-z=95 Khi đó x+y+z=
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
x - 1/2 = y - 2/3 = z-3/4 = 2x - 2 + 3y - 6 - z + 3/4 + 9 - 4 = 95 + -5/10 = 10
x-1/2 = 10 => x =21
y-2/3 =10 => y = 32
z-3/4 = 10 => z = 43
Vậy x + y + z = 21 + 32 + 43 = 96
Ta có:\(\frac{x-1}{2}=\frac{2.\left(x-1\right)}{2.2}=\frac{2x-2}{4}\)
\(\frac{y-2}{3}=\frac{3.\left(y-2\right)}{3.3}=\frac{3y-6}{9}\)
Theo t/c dãy tỉ số = nhau:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{95-5}{9}=\frac{90}{9}=10\)
=> \(\frac{x-1}{2}=10\Rightarrow x-1=10.2=20\Rightarrow x=20+1=21\)
=> \(\frac{y-2}{3}=10\Rightarrow y-2=10.3=30\Rightarrow y=30+2=32\)
=> \(\frac{z-3}{4}=10\Rightarrow z-3=10.4=40\Rightarrow z=40+3=43\)
Vậy x + y + z = 21 + 32 + 43 = 96.
Ta có : \(\frac{2x-2}{4}\)=\(\frac{3y-6}{9}\)=\(\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x-2}{4}\)=\(\frac{3y-6}{9}\)=\(\frac{z-3}{4}\)=\(\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)=\(\frac{2x+3y-z-5}{9}\)=\(\frac{45}{9}\)=5
=> x = 11
y = 17
z = 23
=> x + y + z = 11 + 17 + 23 = 51
1a.Ta có:
x-1/2=y-2/3=z-3/4<=>(2x-1)/2=(3y-2)/3=...
=>(50-3z)4=4z-3<=>200-12z=4z-3<=>16z=2...
=>z=203/16.thay vào dãy tỉ số ban đầu ta tìm được x=199/16,y=605/16
câu 2:
bạn chép sai đề bài rồi hay sao ấy
đề bài phải thế này mới đúng:cho đk như bạn.cmr:(a^3+b^3+c^3)/(b^3+c^3+d^3)=a/d
giải theo tỉ lệ thức là ra ngay đấy mà.Cố lên bạn nhé!
Ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2.1}{4}=\frac{3y-3.2}{9}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{\left(2x+3y-z\right)+\left(-2+-6+3\right)}{9}=\frac{50+\left(-5\right)}{9}=\frac{45}{9}=5\)\(\Rightarrow\frac{x-1}{2}=5\Rightarrow x=5.2+1=11\)
\(\Rightarrow\frac{y-2}{3}=5\Rightarrow y=5.3+2=17\)
\(\Rightarrow\frac{z-3}{4}=5\Rightarrow z=5.4+3=23\)
Vậy \(x+y-z=11+17-23=28-23=5\)
Ta có: \(\frac{x-1}{2}=\frac{2x-2}{4};\frac{y-2}{3}=\frac{3y-6}{9}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\) và \(2x+3y-z=50\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)
\(=\frac{2x+3y-z-\left(2+6-3\right)}{9}=\frac{50-5}{9}=5\)
=> \(x=5.2+1=11\)
\(y=5.3+2=17\)
\(z=5.4+3=23\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}.\)
Áp dụng tc dãy tỉ số bằng nhau ta có :
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}\)
\(=\frac{50-5}{9}=5\)
\(\left(+\right)\frac{x-1}{2}=5=>x=11\)
\(\left(+\right)\frac{y-2}{3}=5=>y=17\)
\(\left(+\right)\frac{z-3}{4}=5\Rightarrow z=23\)
\(=>x+y+z=11+17+23=51\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)+\left(-2-6+3\right)}{9}\)\(=\frac{50-5}{9}=\frac{45}{9}=5\)
Khi đó:\(\frac{2x-2}{4}=5\Rightarrow2x-2=20\Rightarrow x=11;\frac{3y-6}{9}=5\Rightarrow3y-6=45\Rightarrow y=17;\)
\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow23\)