K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

* Ta có:

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Leftrightarrow\dfrac{axy}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)

\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

* Ta có:

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{b^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=1\)\(cxy+bxz+ayz=0\)

\(\Rightarrow2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=0\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

Vậy.........................

13 tháng 6 2017

Ta có:

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

=>\(\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

=> \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=1\)

=>\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{ayz}{abc}+\dfrac{bxz}{abc}\right)=1\) (1)

Lại có:

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

=> \(\dfrac{a}{x}.\dfrac{yz}{yz}+\dfrac{b}{y}.\dfrac{xz}{xz}+\dfrac{c}{z}.\dfrac{xy}{xy}=0\)

=>\(\dfrac{ayz}{xuy}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\) (2)

Thay (2) vào (1) ta được

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\)

=> \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

23 tháng 10 2018

Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{1}{k}\Rightarrow x=ak;y=bk;y=ck\)

\(\Rightarrow\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{a^2k^2+b^2k^2+c^2k^2}{\left(a^2k+b^2k+c^2k\right)^2}=\frac{k^2\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\frac{1}{a^2+b^2+c^2}\)

23 tháng 10 2018

Mạo phép sửa đề!CMR: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{3}{a^2+b^2+c^2}\)

Ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) 

\(\Rightarrow\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{x^2+y^2+z^2}{ax+by+cz}\)  (t/c dãy tỉ số bằng nhau)

\(\Rightarrow\frac{x^2}{\left(ax\right)^2}=\frac{y^2}{\left(by\right)^2}=\frac{z^2}{\left(cz\right)^2}=\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}\) (1)

Lại có: \(\frac{x^2}{\left(ax\right)^2}=\frac{y^2}{\left(by\right)^2}=\frac{z^2}{\left(cz\right)^2}=\) \(\frac{x^2}{a^2x^2}=\frac{y^2}{b^2y^2}=\frac{z^2}{c^2z^2}=\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}=\frac{3}{a^2+b^2+c^2}\)

10 tháng 12 2017

Ta có : \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\)

\(\Rightarrow\dfrac{bcx}{abc}+\dfrac{acy}{abc}+\dfrac{abz}{abc}=0\)

\(\Rightarrow\dfrac{bcx+acy+abz}{abc}=0\)

\(\Rightarrow bcx+acy+abz=0\)

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=10\)

\(\Rightarrow\left(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\right)^2=10^2\)

\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{bc}{yz}+\dfrac{ac}{xz}\right)=100\)

\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{abz+bcx+acy}{xyz}\right)=100\)

\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{0}{xyz}\right)=100\)

\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=100\)

\(\Rightarrow S=100\)

10 tháng 12 2017

Ta đặt x/a=m;y/b=n;c/z=k suy ra m+n+k=0 suy ra

a/x=1/m;y/b=1/n và c/z=1/k từ đó ta có bài toán m+n+k=0 và 1/n+1/m+1/k=1

Mk chỉ gợi ý đến đó thôi nha các bạn tự làm tiếp nha nhớ tick mk vs

17 tháng 8 2017

\(a,b,c,x,y,z\ne0\) nên :

Đặt \(\dfrac{a}{x}=m;\dfrac{b}{y}=n;\dfrac{c}{z}=p\Rightarrow\dfrac{x}{a}=\dfrac{1}{m};\dfrac{y}{b}=\dfrac{1}{n};\dfrac{z}{c}=\dfrac{1}{p}\)

Vậy ta có: \(m+n+p=0\)

\(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}=1\Leftrightarrow\left(\dfrac{1}{m}+\dfrac{1}{m}+\dfrac{1}{p}\right)^2=1\)

\(\Leftrightarrow\dfrac{1}{m^2}+\dfrac{1}{n^2}+\dfrac{1}{p^2}+2\left(\dfrac{m+n+p}{mnp}\right)=1\)

\(\Leftrightarrow\dfrac{1}{m^2}+\dfrac{1}{n^2}+\dfrac{1}{p^2}=1\)

Vậy: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\Rightarrow M=1\)

28 tháng 6 2017

a, \(9x^2+y^2+2z^2-18x-6y+4z+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\left\{{}\begin{matrix}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{matrix}\right.\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

Vậy...

28 tháng 6 2017

b, Câu hỏi của Cry... - Toán lớp 8 | Học trực tuyến

20 tháng 11 2017

+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)

\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)

b: \(M=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=\dfrac{a+b+c}{abc}=0\)

c: \(B=\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(x-z\right)\left(y-z\right)}-\dfrac{x}{\left(x-z\right)\left(x-y\right)}\)

\(=\dfrac{y\left(x-z\right)-z\left(x-y\right)-x\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+zy-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)

24 tháng 3 2017

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=\dfrac{xbc+yac+zab}{abc}=1\\ \Rightarrow xbc+yac+zab=abc\)

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=\dfrac{ayz+bxz+cxy}{xyz}=0\\ \Rightarrow ayz+bxz+cxy=0\)

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(abc\right)^2}\)

\(\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc+yac+zab\right)^2}\\ =\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2+2abc\left(ayz+bxz+cxy\right)}\)

\(\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2+2abc.0}\\ =\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}=1\)

vậy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)(đpcm)

25 tháng 3 2017

\(\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2.\dfrac{xyz}{abc}.\left(\dfrac{c}{z}+\dfrac{b}{y}+\dfrac{a}{x}\right)=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2.\dfrac{xyz}{abc}.0=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)