\(\left(x-y +z\right)^2\)+\(\sqrt{y^4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

12 tháng 5 2019

Vì \(\hept{\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\forall x\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\forall y\\\left|x+y+z\right|\ge0\forall x;y;z\end{cases}}\)

Do đó : \(\hept{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{cases}}\)

25 tháng 10 2019

Hình như

25 tháng 10 2019

Ap dụng tính chất tỉ lệ thức ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Nên ta có

\(1+\frac{x}{y}=\left(1+\frac{y+z-x}{y}\right)=\frac{2z}{y}\)

\(1+\frac{y}{z}=1+\frac{y}{z}=\frac{2x}{z}\)

\(1+\frac{z}{x}=\frac{2y}{x}\)

Chỗ này mình làm hơi tắt nên tự hiệu nhé

\(\Rightarrow\frac{2z}{y}\cdot\frac{2y}{x}\cdot\frac{2x}{z}=\frac{8xyz}{xyz}=8\)

22 tháng 2 2018

Ta thấy : VT >= 0

Dấu "=" xảy ra <=> x-\(\sqrt{2}\)= 0 ; y+\(\sqrt{2}\)= 0 ; x+y+z = 0 

<=> x=\(\sqrt{2}\);  y=\(-\sqrt{2}\); z = 0

Vậy ...........

Tk mk nha

25 tháng 7 2016

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

5 tháng 2 2018

Từ điều kiện đề bài ta có:

\(x^2,y^2,z^2\le1\)

Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)

\(\Rightarrow xy\ge0\)

Ta có:

\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)

11 tháng 2 2018

không biết liệu dấu đẳng thức có xẩy ra không nhỉ

1 tháng 9 2019

Đáp án đúng nhưng cách làm này là sai

1 tháng 9 2019

bày em cách làm với được không ạ? em tự suy ra chứ thầy cô chưa bày j cả nên là em cx chưa hiểu cho lắm mong anh giúp đỡ ạ

21 tháng 2 2019

câu b để nghĩ chút.

Đặt \(\frac{x}{2009}=\frac{y}{2010}=\frac{z}{2011}=k\)

\(\Rightarrow x=2009k;y=2010k;z=2011k\)

Khi đó:\(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)

\(\Leftrightarrow\left(2009k-2011k\right)^3=8\left(2009k-2010k\right)^2\left(2010k-2011k\right)\)

\(\Leftrightarrow\left(-2k\right)^3=8\left(-k\right)^2\left(-k\right)\)

\(\Leftrightarrow-8k^3=-8k^3\)(luôn đúng)

Vậy \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)

21 tháng 2 2019

câu b sai đề

\(\frac{x}{26}+\frac{y}{4}=\frac{z}{2012}\Rightarrow\frac{2x+13y}{52}=\frac{z}{2012}\Leftrightarrow2012.\left(2x+13y\right)=52z\)

\(\Leftrightarrow2.2012x+13.2012y=52z\)

1 bài có nhiều ẩn thế ? :)