Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)
\(=ac+bc+c^2+ab\)
\(=a\left(b+c\right)+c\left(b+c\right)\)
\(=\left(b+c\right)\left(a+b\right)\)
CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)
CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}.3\)
\(\Rightarrow P\le\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
Vậy /...
\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)
\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)
Tương tự rồi cộng lại:
\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)
Dấu "=" xảy ra tại \(a=b=c=1\)
\(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự:
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng lại:
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ca}{2}\)
\(\Rightarrow VT\ge a+b+c\)
Mặt khác:
\(\frac{9}{a+b+c}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\Rightarrow9\le3\left(a+b+c\right)\Rightarrow a+b+c\ge3\)
Khi đó:
\(VT\ge a+b+c\ge3\left(đpcm\right)\)
Dấu "=" xảy ra tại \(a=b=c=1\)
Từ \(a+b+c+ab+bc+ca=6abc\)
\(\Rightarrow\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
Cho \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\) thì ta có:
\(x^2+y^2+z^2\ge3\forall\hept{\begin{cases}x+y+z+xy+yz+xz=6\\x,y,z>0\end{cases}}\)
Áp dụng BĐT AM-GM ta có:
\(x^2+1\ge2\sqrt{x^2}=2x\)
\(y^2+1\ge2\sqrt{y^2}=2y\)
\(z^2+1\ge2\sqrt{z^2}=2z\)
Cộng theo vế 3 BĐT trên ta có:
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)
Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)
Cộng theo vế của (1) và (2) ta có:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\Rightarrow x^2+y^2+z^2\ge3\)
Đẳng thức xảy ra khi \(a=b=c=1\)
GT của bài toán được viết lại thành\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
áp dụng bđt Cauchy ta được
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)
\(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)
cộng các bất đẳng thức trên theo vế ta được \(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2\cdot6=12\)
hay \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
đẳng thức được chứng minh, dấu "=" xảy ra khi a=b=c=1
Câu này t dùng vi-et giải được. Nhưng để mai đi. Giờ giải bằng điện thoại thì khó quá
Đặt: \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Ta có:
\(\frac{a+1}{b^2+1}=a-\frac{ab^2-1}{b^2+1}\ge a-\frac{ab^2-1}{2b}=a-\frac{ab}{2}+\frac{1}{2b}\)
Tương tự ta có:
\(\frac{b+1}{c^2+1}\ge b-\frac{bc}{2}+\frac{1}{2c},\frac{c+1}{a^2+1}\ge c-\frac{ca}{2}+\frac{1}{2a}\)
\(\Rightarrow P\ge a+b+c-\frac{ab+bc+ca}{2}+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}+\frac{1}{2}\left(\frac{\left(1+1+1\right)^2}{a+b+c}\right)\)
\(=3-\frac{9}{6}+\frac{1}{2}.\frac{9}{3}=3\)
Dấu bằng xảy ra khi a=b=c=1
Từ dk suy ra 1/bc+1/ac+1/ab+1/c+1/b+1/a=6 đặt 1/a=x;1/b=y;1/c=z→x+y+x+xy+yz+xz=6 ta phải cm x2+y2+z2>=3 Ta có:2(x2+y2+z2)>=2(xy+yz+xz) (1) (x-1)2>=0→x2>=2x-1 Tương tự :y2>=2y-1;z2>=2z-1 do đó :x2+y2+z2>=2(x+y+z)-3 (2) cộng vế 1 vs 2 ta có:3(x2+y2+z2)>=2(x+y+z+xy+yz+xz)-3 <=>3(x2+y2+z2)>=2.6-3 <=>x2+y2+z2>=3