K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2018

Có ab > 2013a + 2014b <=> 1 > 2013/b + 2014/a (vì a,b >0 )

\(\Leftrightarrow a+b>\frac{2013\left(a+b\right)}{b}+\frac{2014\left(a+b\right)}{a}=2013+2014+\frac{2013a}{b}+\frac{2014b}{a}\)

Mà \(\frac{2013a}{b}+\frac{2014b}{a}\ge2\sqrt{2013\cdot2014}\)

\(\Rightarrow a+b>2013+2014+2\sqrt{2013\cdot2014}=\left(\sqrt{2013}+\sqrt{2014}\right)^2\)

=> đpcm

Tích cho mk nhoa !!!! ~~~

7 tháng 1 2019

\(4\sqrt[4]{a}+7\sqrt[7]{b}\ge11\sqrt[11]{ab}\)

Hình như là CMR >\(A+B>\left(\sqrt{2013}+\sqrt{2014}\right)^2\)

Do \(ab>2013a+2014b\)

\(\Rightarrow1>\frac{2013}{b}+\frac{2014}{a}\)

\(\Rightarrow a+b>\frac{2013}{b}\left(a+b\right)+\frac{2014}{a}\left(a+b\right)=2013+\frac{2013a}{b}+\frac{2014b}{a}+2014\)

Áp dụng BĐT Cô si với a,b>0 ta có:

\(\frac{2013a}{b}+\frac{2014b}{a}\ge2\sqrt{\frac{2013a}{b}.\frac{2014b}{a}}=2\sqrt{2013.2014}\)

\(\Rightarrow a+b>2013+2\sqrt{2013.2014}+2014=\left(\sqrt{2013}+\sqrt{2014}\right)^2\)

17 tháng 12 2017

(căn 2013+2014)các bạn

Áp dụng bđt Bunhiacopski ta có

\(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\le\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2}+\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2}.\)

\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{c+b-c}.\sqrt{c+a-c}=\sqrt{ab}\left(đpcm\right)\)

30 tháng 10 2019

Bu-nhi-a-cốp-ski: (ab+cd)2 \(\le\)( a2 + c2 )( b2 + d2 ) mà bạn.

NM
1 tháng 9 2021

ta có :

\(ab>2016a+2017b\Rightarrow a\left(b-2016\right)>2017b\) hay ta có : \(a>\frac{2017b}{b-2016}\)

Vậy \(a+b>\frac{2017b}{b-2016}+b=b+2017+\frac{2016\times2017}{b-2106}=b-2016+\frac{2016\times2017}{b-2106}+2016+2017\)

\(\ge2\sqrt{2016\times2017}+2016+2017=\left(\sqrt{2016}+\sqrt{2017}\right)^2\)

Vậy ta có đpcm

5 tháng 1 2021

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có....

5 tháng 1 2021

.

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có

16 tháng 2 2016

tui lớp lớp 6 not làm được HA HA HA!!!

29 tháng 6 2017

a) sửa đề:  \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)  (luôn đúng)

Đẳng thức xảy ra  \(\Leftrightarrow\)  a = b

b) Đề hỏi gì vậy bn?

29 tháng 6 2017

sịt cái đề sai hết