Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2
Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)
\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)
Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)
Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)
\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)
Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)
Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có
\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)
Lập bảng biến thiên ta có min[2;\(+\infty\)) \(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)
Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2
Đặt a=xc; b=cy (x;y >=1)
- Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
- Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
- Xét x,y>1 thay vào giả thiết ta có
\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)
\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)
Biểu thức P được viết lại như sau
\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)
\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)
Đặt t=xy với t>=4
Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)
Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)
Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)
Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c
ta có \(4\left(a^2+a+2b^2\right)=5\left(a^2+2ab+b^2\right)+3\left(a^2-2ab+b^2\right)\)\(=5\left(a+b\right)^2+3\left(a-b\right)^2\ge5\left(a+b\right)^2\)(vì \(\left(a-b\right)^2\ge0\))
vì a,b dương nên \(2\sqrt{2a^2+ab+2b^2}\ge\sqrt{5}\left(a+b\right)\Leftrightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\left(1\right)\)
dấu "=" xảy ra khi a=b
chứng minh tương tự để có \(\hept{\begin{cases}\sqrt{2b^2+bc+2c^2}\ge\frac{5}{4}\left(b+c\right)\Leftrightarrow b=c\left(2\right)\\\sqrt{2c^2+ca+2a^2}\ge\frac{5}{4}\left(a+c\right)\Leftrightarrow a=c\left(3\right)\end{cases}}\)
cộng các bất đẳng thức (1) (2) và (3) theo vế ta được
\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ac+2a^2}\ge\frac{5}{4}\cdot2\left(a+b+c\right)=2019\sqrt{5}\)
dấu "=" xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2019\end{cases}\Leftrightarrow a=b=c=673}\)
* Ta có:
\(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
* Tương tự ta có:
\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\); \(\sqrt{2c^2+ca+2a^2}\ge\frac{\sqrt{5}}{2}\left(c+a\right)\)
\(\Rightarrow P\ge\frac{\sqrt{5}}{2}\left(a+b\right)+\frac{\sqrt{5}}{2}\left(b+c\right)+\frac{\sqrt{5}}{2}\left(c+a\right)\)
\(=\sqrt{5}\left(a+b+c\right)=2019\sqrt{5}\)
(Dấu "=" xảy ra khi a = b = c = 673)
Vậy \(P_{min}=2019\sqrt{5}\Leftrightarrow a=b=c=673\)
Đặt VT là K.
Ta có: \(6a^2+8ab+11b^2=\left(2a+3b\right)^2+2\left(a-b\right)^2\ge\left(2a+3b\right)^2\)
\(\Rightarrow\frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}\le\frac{a^2+3ab+b^2}{2a+3b}\)
Tiếp tục ta chứng minh: \(\frac{a^2+3ab+b^2}{2a+3b}\le\frac{3a+2b}{5}\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Tương tự ta có: \(\frac{b^2+3bc+c^2}{\sqrt{6b^2+8bc+11c^2}}\le\frac{3b+2c}{5}\);\(\frac{c^2+3ca+a^2}{\sqrt{6c^2+8ca+11a^2}}\le\frac{3c+2a}{5}\)
Cộng từng vế của các bđt trên, ta được:
\(M\le\frac{3b+2c}{5}+\frac{3a+3b}{5}+\frac{3c+2a}{5}=a+b+c\)
Lại có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\le a^2+b^2+c^2+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)
hay \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow a+b+c\le3\)
Vậy \(M\le3\)
Đẳng thức xảy ra khi a = b = c = 1
\(\sqrt{a^2+\dfrac{1}{b+c}}=\dfrac{2}{\sqrt{17}}\sqrt{\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)
Mặt khác:
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6.\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D
Mấy bạn ơi , cho tớ hỏi:
Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?
Ai trả lời nhanh mình tích cho.
Lời giải:
Trước tiên, ta sẽ CM bất đẳng thức sau:\(P\geq \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)\((\star)\)
Thật vậy: BĐT tương đương với :
\(a^2\left (\frac{1}{b+c}-\frac{1}{a+b} \right )+b^2\left ( \frac{1}{c+a}-\frac{1}{b+c} \right )+c^2\left ( \frac{1}{a+b}-\frac{1}{a+c} \right )\geq 0\)
\(\Leftrightarrow a^2(a^2-c^2)+b^2(b^2-a^2)+c^2(c^2-b^2)\geq 0\)
\(\Leftrightarrow (a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2\geq 0\) (luôn đúng)
BĐT \((\star)\) được chứng minh .
Giờ ta chỉ cần tìm min của \(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
Để ý rằng \(A-\left(\frac{b^2}{a+b}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\right)=\sum \left(\frac{a^2-b^2}{a+b}\right)=a-b+b-c+c-a=0\)
\(\Rightarrow 2A=\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\). Sử dụng Cauchy-Schwarz:
\(2A\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{2(a+b+c)}=\frac{1008}{a+b+c}\)
Sử dụng AM_GM: \(\sqrt{2016}=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\geq \frac{a+b}{\sqrt{2}}+\frac{b+c}{\sqrt{2}}+\frac{c+a}{\sqrt{2}}\)
\(\Leftrightarrow a+b+c\leq 12\sqrt{7}\) suy ra \(A\geq 6\sqrt{7}\) suy ra \(P_{\min}=6\sqrt{7}\)
Dấu bằng xảy ra khi \(a=b=c=4\sqrt{7}\)
\(Q=\sum\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{1}{2}\sum\left(a+b\right)=a+b+c=2019\)
\(\Rightarrow Q_{min}=2019\) khi \(a=b=c=\frac{2019}{3}\)
Bạn có thể giải chi tiết giúp mình không. Cảm ơn nhiều.