Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP dụng BĐT bunhia có:
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\left(7-x\right)^2\le3\left(a^2+b^2+c^2\right)\) \(\Leftrightarrow-\dfrac{\left(7-x\right)^2}{3}\ge-\left(a^2+b^2+c^2\right)\)
Pt (2)\(\Leftrightarrow\)\(x^2=13-\left(a^2+b^2+c^2\right)\le13-\dfrac{\left(7-x\right)^2}{3}\)
\(\Leftrightarrow3x^2\le39-\left(7-x\right)^2\)
\(\Leftrightarrow4x^2-14x+10\le0\) \(\Leftrightarrow1\le x\le\dfrac{5}{2}\)
=>xmin=1 \(\Leftrightarrow\)a=b=c=2
xmax=\(\dfrac{5}{2}\)\(\Leftrightarrow\) a=b=c=\(\dfrac{3}{2}\)
3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))
Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)
Hệ phương trình đã cho trở thành
\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)
b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)
c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)
Bài 4:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)
=>9a-6-4b-2=30 và 3a+6+6b-2=-20
=>9a-4b=38 và 3a+6b=-20+2-6=-24
=>a=2; b=-5
c/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+x=a\\y^2+y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\) theo Viet đảo, a và b là nghiệm:
\(t^2-8t+12=0\Rightarrow\left[{}\begin{matrix}t=6\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=2\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x-6=0\\y^2+y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x-2=0\\y^2+y-6=0\end{matrix}\right.\end{matrix}\right.\)
Bạn tự bấm máy
b/
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=0\\\left(x+y\right)^2-2xy-x-y=22\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+2xy+2=0\\\left(x+y\right)^2-2xy-x-y-22=0\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\Rightarrow xy=-5\\x+y=-5\Rightarrow xy=4\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=-5\end{matrix}\right.\) thì x; y là nghiệm:
\(t^2-4t-5=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=5\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(-1;5\right);\left(5;-1\right)\)
TH2: \(\left\{{}\begin{matrix}x+y=-5\\xy=4\end{matrix}\right.\) thì x; y là nghiệm:
\(t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-4\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(-1;-4\right);\left(-4;-1\right)\)
a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)
\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:
\(t^2-t+2=0\) (vô nghiệm)
TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)
b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)
c/ Trừ vế với vế:
\(x^2-y^2-2x+2y=y-x\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)
Thay vào pt đầu:
\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)
d/ Sao có t từ đâu vào đây thế này? :(
e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)
\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)
Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)