K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

bn có thể kb với mk đc ko

avt616014_60by60.jpgTrần Thị Hảo

17 tháng 11 2016

\(\hept{\begin{cases}a\left(a+b+c\right)=-12\\b\left(a+b+c\right)=18\\c\left(a+b+c\right)=30\end{cases}}\)

Cộng cả 3 phương trình với nhau vế theo vế được

\(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=36\)

\(\Leftrightarrow\left(a+b+c\right)^2=36\)

\(\Leftrightarrow\orbr{\begin{cases}\left(a+b+c\right)=6\\\left(a+b+c\right)=-6\end{cases}}\)

Với \(\left(a+b+c\right)=6\)thì

\(\hept{\begin{cases}a=-2\\b=3\\c=5\end{cases}}\)

Với \(\left(a+b+c\right)=-6\)thì

\(\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}\)

17 tháng 11 2016

Bài này cho vào Câu Hỏi Hay có quá ko :v

5 tháng 5 2019

\(\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\Leftrightarrow\hept{\begin{cases}a+b-2c=a-b\\b+c-2a=b-c\\c+a-2b=c-a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2b-2c=0\\2c-2a=0\\2a-2b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b-c=0\\c-a=0\\a-b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=c\\c=a\\a=b\end{cases}}\)

\(\Leftrightarrow a=b=c\)( đpcm )

\(\Rightarrow\hept{\begin{cases}a+b-2c=a-b\\b+c-2a=b-c\\c+a-2b=a-c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2b-2c=0\\2c-2a=0\\2a-2b=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}b-c=0\\c-a=0\\a-b=0\end{cases}\Rightarrow\hept{\begin{cases}b=c\\c=a\\a=b\end{cases}\Rightarrow}a=b=c\left(dpcm\right)}\)

3 tháng 3 2020

Ta có:\(\left|a\right|,\left|b\right|\) \(\leq\) \(1\)

\(\implies\) \(\left(1-a\right).\left(1-b\right)\) \(\geq\) \(0\)

\(\implies\) \(1-b-a+ab\)\(\geq\) \(0\)

\(\implies\) \(1+ab\) \(\geq\) \(a+b\)

\(\implies\) \(\left|1+ab\right|\) ​​\(\geq\)​ \(\left|a+b\right|\) \(\left(đpcm\right)\)

3 tháng 3 2020

chỗ nào không hiểu hỏi tớ bài này hơi khó