Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ bất đẳng thức Cô si ta có:
\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)
\(\Rightarrow\)Ta cần chứng minh:
\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.
sửa: chứng minh \(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{3}{2}\)
áp dụng bđt Cauchy ta có
\(\frac{1}{1+ab}=1-\frac{1}{1+ab}\ge1-\frac{ab}{2\sqrt{ab}}=1-\frac{\sqrt{ab}}{2}\)
tương tự ta có \(\hept{\begin{cases}\frac{1}{1+bc}\ge1-\frac{\sqrt{bc}}{2}\\\frac{1}{1+ca}\ge1-\frac{\sqrt{ca}}{2}\end{cases}}\)
cộng theo vế các bđt trên và áp dụng bđt Cauchy ta được
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge3-\frac{1}{2}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\ge3-\frac{1}{2}\left(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\right)=3-\frac{a+b+c}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
dấu "=" xảy ra khi \(\hept{\begin{cases}1+ab=1+bc=1+ca\\a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)
Từ giả thiết ta có : \(\begin{cases}\left(b-1\right)\left(c-2\right)\le0\\\left(b-2\right)\left(c-1\right)\le0\end{cases}\) \(\Leftrightarrow\begin{cases}bc+2\le2b+c\\bc+2\le b+2c\end{cases}\) \(\Leftrightarrow2\left(bc+2\right)\le3\left(b+c\right)\le3\left(4-a\right)\)
Do đó \(\frac{a^2}{bc+2}\ge\frac{2}{3}.\frac{a^2}{4-a}\), đẳng thức xảy ra \(\Leftrightarrow a=0,b=c=2\)
Tương tự : \(\frac{b^2}{ac+2}\ge\frac{2}{3}.\frac{b^2}{4-b}\) và \(\frac{c^2}{ab+2}\ge\frac{2}{3}.\frac{c^2}{4-c}\)
Suy ra \(\frac{a^2}{bc+2}+\frac{b^2}{ac+2}+\frac{c^2}{ab+2}>\frac{2}{3}\left(\frac{a^2}{4-a}+\frac{b^2}{4-b}+\frac{c^2}{4-c}\right)\) (*) (vì không tồn tại a,b,c để đẳng thức xảy ra)
Xét hàm số \(f\left(t\right)=\frac{t^2}{4-t},t\in\left[1;2\right]\)
Ta có \(f'\left(t\right)=\frac{t\left(8-t\right)}{\left(4-t\right)^2}>0\) mọi \(t\in\left[1;2\right]\) nên hàm số đồng biến trên \(\left[1;2\right]\)
Suy ra \(f\left(t\right)\ge f\left(1\right)=\frac{1}{3}\) với mọi \(t\in\left[1;2\right]\)
Thay t bởi a, b, c vào vế phải của (*) ta được :
\(P=\frac{a^2}{bc+2}+\frac{b^2}{ac+2}+\frac{c^2}{ab+2}>\frac{2}{3}\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)=\frac{2}{3}\)
Vậy \(P>\frac{2}{3}\)
đặt \(a=\frac{yz}{x^2};b=\frac{zx}{y^2};c=\frac{xy}{z^2}\left(x;y;z>0\right)\)khi đó bđt cần chứng minh trở thành
\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+xz\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)
áp dụng bđt Bunhiacopxki dạng phân thức ta được
\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+zx\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\)
phép chứng minh sẽ hoàn tất nếu ta chứng minh được
\(\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)
hay ta cần chứng minh
\(2\left(x^2+y^2+z^2\right)^2\ge\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+xz\right)\left(2y^2+xz\right)+\left(z^2+xy\right)\left(2z^2+xy\right)\)
khai triển và thu gọn ta được \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
đánh giá cuối cùng là một đánh giá đúng. Bất đẳng thức được chứng minh
Ta có:
\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)
Hoàn toàn tương tự ta có:
\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);
\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo bất đẳng thức trên ta được:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Do đó:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{1}{6\left(ab+bc+ca\right)}\)
Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)
Lời giải
a) c/m \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}>0\forall x\)
\(\Delta_{x_{a,b,c}}=a^2+12bc-\dfrac{4}{3}a^2=\dfrac{-a^2+36bc}{3}\)
\(\Delta=\dfrac{-a^3+36}{3a}\)
\(a^3>36\Rightarrow\left\{{}\begin{matrix}a>0\\-a^3+36< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{-36a^3+36}{3a}< 0\)
\(\Rightarrow\) F(x) vô nghiệm => f(x)>0 với x => dpcm
b)
\(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)\(\Leftrightarrow\dfrac{a^2}{3}+b^2+c^2-ab-bc-ac>0\)
\(\Leftrightarrow\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\)
Từ (a) =>\(f\left(b+c\right)=\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\) => dccm
\(-\frac{1}{\sqrt{3}}\le\sqrt{ab+bc+ca}\le\frac{1}{\sqrt{3}}\) chứ ạ?
- Nếu cả 3 số đều ko âm thì \(abc\le\frac{1}{27}\Rightarrow VT< 0\) BĐT luôn đúng
- Nếu 2 trong 3 số không âm thì \(abc\le0\Rightarrow VT< 0\) BĐT luôn đúng
Do đó ta chỉ cần chứng minh trong trường hợp 2 số âm, 1 số dương
Không mất tính tổng quát, giả sử \(\left\{{}\begin{matrix}c>0\\a;b< 0\end{matrix}\right.\) đặt \(\left\{{}\begin{matrix}a=-p\\b=-q\end{matrix}\right.\) \(\Rightarrow p;q;c>0\)
\(\Rightarrow c-p-q=1\Rightarrow c=p+q+1\)
BĐT trở thành: \(8pq\left(p+q\right)-8\le\left[\left(p+q\right)^2+p+q-pq-1\right]^2\)
Đặt \(\left\{{}\begin{matrix}p+q=x>0\\pq=y>0\end{matrix}\right.\) \(\Rightarrow x^2\ge4y\)
Ta cần c/m: \(8y\left(x+1\right)-8\le\left(x^2+x-y-1\right)^2\)
\(\Leftrightarrow x^4+2x^3-2x^2y-x^2-10xy-2x+y^2-6y+9\ge0\)
\(\Leftrightarrow x^4+2x^3-2x^2y-2x^2-10xy-2x+8+\left(y-1\right)^2+\left(x^2-4y\right)\ge0\)
Do \(\left(y-1\right)^2+\left(x^2-4y\right)\ge0\) nên ta chỉ cần chứng minh:
\(x^4+2x^3-2x^2y-2x^2-10xy-2x+8\ge0\)
\(\Leftrightarrow x^4+2x^3-2x^2\left(\frac{x^2}{4}\right)-2x^2-10x\left(\frac{x^2}{4}\right)-2x+8\ge0\)
\(\Leftrightarrow x^4-x^3-4x^2-4x+16\ge0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+3x+4\right)\ge0\) (luôn đúng với \(x>0\))
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Leftrightarrow p=q=1\) hay \(\left(a;b;c\right)=\left(-1;-1;3\right)\) và hoán vị
//Hơi trâu bò :(