Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2};\frac{z^3}{x\left(y+2z\right)}\ge\frac{x+y+z}{3}\)
đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)
\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)
\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)
đề sai á? tg ns lăng nhăng lên đây thử xem có ai giải k thôi
đặt \(3^{13579}=m\).
Vì (3;13579)=1 nên (13579;m)=1 (*)
đem m+1 số \(13579;13579^2;...;13579^{m+1}\)chia cho m
Theo nguyên lý Dirichle trong m+1 số trên có ít nhất 2 số khi chia cho m có cùng số dư
Gọi 2 số đó là \(13579^x\&13579^y\)(tự đk cho x;y)
giả sử x>y
=>13579^x-13579^y chia hết cho m
=>\(13579^y\left(13579^{x-y}-1\right)\)chia hết cho m
mà 13579^y không chia hết cho m nên 13579^x-y -1 chia hết cho m
=>tồn tại n=x-y thỏa mãn đề bài
Ta có a2 - (b - c)2 <= a2
<=>(a+b-c)(a-b+c) <= a2
Tương tự
(b-c+a)(b-a+c) <= b2
(c-a+b)(c-b+a) <= c2
Từ đó ta có (b-c+a)2(b-a+c)2(c-b+a)2 <= a2 b2 c2
<=> (c-b+a)(b-c+a)(b-a+c) <= abc (nhân vô chuyển vế nha)
<=> (a2 b + a2 c) + (b2 a + b2 c) + (c2 a + c2 b) <= a3 + b3 + c3 + 3abc
<=> a2 (a+b+c) + b2 (a+b+c) + c2 (a+b+c) <= 2(a3 + b3 + c3) + 3abc ( cộng 2 vế cho
Ta có a2 - (b - c)2 <= a2
<=>(a+b-c)(a-b+c) <= a2
Tương tự
(b-c+a)(b-a+c) <= b2
(c-a+b)(c-b+a) <= c2
Từ đó ta có (b-c+a)2(b-a+c)2(c-b+a)2 <= a2 b2 c2
<=> (c-b+a)(b-c+a)(b-a+c) <= abc
<=> (a2 b + a2 c) + (b2 a + b2 c) + (c2 a + c2 b) <= a3 + b3 + c3 + 3abc
<=> a2 (a+b+c) + b2 (a+b+c) + c2 (a+b+c) <= 2(a3 + b3 + c3) + 3abc (cộng 2 vế cho a3 + b3 + c3)
<=> a2 + b2 + c2 <= 2(a3 + b3 + c3 ) + 3abc
Xong
._. Cauchy ngược kết hợp nâng bậc BĐT (a^2+b^2 +c^2) ^^((:
Chào bạn, Cho hỏi đề thế này hả a^2/(1+b^2 )+ b^2/(1+c^2 ) +c^2/(1+a^2) lớn hơn = 3/2 ?