K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

Ta co: \(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^4\ge2y^3-y^2\)  

\(\Rightarrow x^2+y^3\ge x^3+y^4\ge2y^3-y^2+x^3\Leftrightarrow x^2+y^2\ge x^3+y^3\)

k giai tiep

27 tháng 5 2021

Ta có:  \(\left(y^2-y\right)+2\ge0\Rightarrow2y^3\le y^4+y^2\)

\(\Rightarrow\left(x^3+y^2\right)+\left(x^2+y^3\right)\le\left(x^2+y^2\right)+\left(y^4+x^3\right)\)

Mà \(x^3+y^4\le x^2+y^3\)

\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)

Lại có: \(x\left(x-1\right)^2\ge0;y\left(y+1\right)\left(y-1\right)^2\ge0\)

\(\Rightarrow x\left(x-1\right)^2+y\left(y+1\right)\left(y-1\right)^2\ge0\)

\(\Rightarrow x^3-2x^2+x+y^4-y^3-y^2+y\ge0\)

\(\Rightarrow\left(x^2+y^2\right)+\left(x^2+y^3\right)\le\left(x+y\right)+\left(x^3+y^4\right)\)

Mà \(x^2+y^3\ge x^3+y^4\)

\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)

Và \(\left(x+1\right)\left(x-1\right)\ge0;\left(y-1\right)\left(y^3-1\right)\ge0\)

\(x^3-x^2-x+1+y^4-y-y^3+1\ge0\)

\(\Rightarrow\left(x+y\right)+\left(x^2+y^3\right)\le2+\left(x^3+y^4\right)\)

Mà \(x^2+y^3\ge x^3+y^4\)

\(\Rightarrow x+y\le2\left(3\right)\)

Từ (1), (2), (3) => đpcm

Ta có \(x^2+y^3\ge x^3+y^4\Leftrightarrow x^2+y^2+y^3\ge x^3+y^2+y^4\)

Áp dụng bđt AM-GM ta có \(y^4+y^2\ge2y^3\)

\(\Rightarrow x^2+y^3+y^2\ge x^3+2y^3\)

\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)

Áp dụng bđt Cauchy - Schwarz ta có 

\(\left(x^2+y^2\right)^2\le\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]=\left(x+y\right)\left(x^3+y^3\right)\)

                         \(\le\left(x+y\right)\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)

Lại có

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\le2\left(x+y\right)\)

\(\Rightarrow x+y\le2\left(3\right)\)

Từ (1),(2),(3) => đpcm

Đối với bài này ta cũng có thể chia các khoảng giá trị để chứng minh 

(Nhưng hơi dài và khó hiểu nên mình k làm ) 

Học tốt!!!!!!!!!

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(x^2+y^3\geq x^3+y^4\)

\(\Rightarrow x^2+y^2+y^3\geq x^3+y^4+y^2\geq x^3+2\sqrt{y^6}=x^3+2y^3\)

\(\Rightarrow x^2+y^2\geq x^3+y^3(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x+y^2)(x^2+y^3)\geq (x+y^2)(x^3+y^4)\geq (x^2+y^3)^2\)

\(\Rightarrow x+y^2\geq x^2+y^3\)

\(\Rightarrow x+y+y^2\geq x^2+y^3+y\geq x^2+2\sqrt{y^4}=x^2+2y^2\) (AM-GM)

\(\Rightarrow x+y\geq x^2+y^2\) (2)

Lại áp dụng BĐT AM-GM:

\(x^2+y^2\geq \frac{(x+y)^2}{2}\) . Suy ra \(x+y\geq x^2+y^2\geq \frac{(x+y)^2}{2}\)

\(\Rightarrow 1\geq \frac{x+y}{2}\Rightarrow x+y\leq 2(3)\)

Từ $(1),(2),(3)$ suy ra \(x^3+y^3\leq x^2+y^2\leq x+y\leq 2\)

Dấu bằng xảy ra khi $x=y=1$

15 tháng 7 2018

hấp dẫn thật tiếc là không biết làm

15 tháng 7 2018

Xét \(x,y\ge1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x^3\\y^2\le y^4\end{matrix}\right.\)

\(\Leftrightarrow x^2+y^2\le x^3+y^4\)(không thoả mãn)

Xét \(0< x,y\le1\)

\(\Rightarrow x^2\ge x^3;y^2\ge y^4\)

\(\Leftrightarrow x^2+y^2\ge x^3+y^4\)(thoả mãn)

\(\Rightarrow0< x,y\le1\) (đúng)

\(\Rightarrow\left\{{}\begin{matrix}x^3\le x^2\le x\le1\\y^3\le y^2\le y\le1\end{matrix}\right.\)

\(\Leftrightarrow x^3+y^3\le x^2+y^2\le x+y\le2\)

Dấu "=" xảy ra khi x = y = 1 .

4 tháng 12 2017

Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)

à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha

6 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,

Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new

Help meeee! thanks nhiều ạ

8 tháng 12 2019

Đừng tag níc phụ này.

Mà cái câu 2a) bên dưới gì đó ko có đk gì của a, b, c sao giải đc?

18 tháng 7 2019

\(0< x,y,z< 4\)\(\Rightarrow\)\(\hept{\begin{cases}x\left(x-4\right)< 0\\y\left(y-4\right)< 0\\z\left(z-4\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2< 4x\\y^2< 4y\\z^2< 4z\end{cases}\Leftrightarrow}\hept{\begin{cases}x^3>\frac{x^4}{4}\\y^3>\frac{y^4}{4}\\z^3>\frac{z^4}{4}\end{cases}}}\)

\(\sqrt[4]{x^3}+\sqrt[4]{y^3}+\sqrt[4]{z^3}>\sqrt[4]{\frac{x^4}{4}}+\sqrt[4]{\frac{y^4}{4}}+\sqrt[4]{\frac{z^4}{4}}=\frac{x+y+z}{\sqrt{2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)