Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)
Cộng vế theo vế ta được :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) ( đpcm )
2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :
\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)
Dấu "=" xảy ra <=> b - 1 = 1 <=> b = 2
\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)
Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2
Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)
Dấu "=" xảy ra <=> a = b = 2
Giả sử cả ba bđt đều đúng
Ta có a+b<c+da+b<c+d và ab+cd>(a+b)(c+d)ab+cd>(a+b)(c+d)
→ab+cd>(a+b)2≥4ab→ab+cd>(a+b)2≥4ab (BĐT Cauchy)
→cd≥3ab→cd≥3ab (1)(1)
-------
Ta có (a+b)cd<(c+d)ab(a+b)cd<(c+d)ab và (c+d)(a+b)<ab+cd(c+d)(a+b)<ab+cd
→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab
Mà (a+b)2.cd≥4abcd(a+b)2.cd≥4abcd (BĐT Cauchy)
→(ab+cd)ab>4abcd→(ab+cd)ab>4abcd
→ab>3cd→ab>3cd (2)(2)
(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:Mâu thuẫn với giả thiết a,b,c,da,b,c,d dương
→đpcmGiả sử cả ba bđt đều đúng
Ta có a+b<c+da+b<c+d và ab+cd>(a+b)(c+d)ab+cd>(a+b)(c+d)
→ab+cd>(a+b)2≥4ab→ab+cd>(a+b)2≥4ab (BĐT Cauchy)
→cd≥3ab→cd≥3ab (1)(1)
-------
Ta có (a+b)cd<(c+d)ab(a+b)cd<(c+d)ab và (c+d)(a+b)<ab+cd(c+d)(a+b)<ab+cd
→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab
Mà (a+b)2.cd≥4abcd(a+b)2.cd≥4abcd (BĐT Cauchy)
→(ab+cd)ab>4abcd→(ab+cd)ab>4abcd
→ab>3cd→ab>3cd (2)(2)
(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:Mâu thuẫn với giả thiết a,b,c,da,b,c,d dương
→đpcm
#)Giải :
Giải sử cả ba BĐT đều đúng
Ta có : a + b < c + d và ab + cd > ( a + b )( c + d )
=> ab + cd > ( a + b )2 ≥ 4ab ( BĐT Cauchy )
=> cd ≥ 3ab (1)
Ta có : ( a + b )cd < ( c + d )ab và ( c + d )( a + b ) < ab + cd
=> ( a + b )2 .cd < ( c + d )( a + b )ab < ( ab + cd )ab
Mà ( a + b )2 .cd ≥ 4abcd ( BĐT Cauchy )
=> ( ab + cd )ab > 4abcd
=> ab > 3cd (2)
Từ (1) và (2) => ab + cd > 4( ab + cd ) => ab + cd < 0 mâu thuẫn với giả thiết a,b,c,d
=> Không thể đồng thời xảy ra cả ba BĐT trên ( đpcm )
Ta có: \(a< b\Rightarrow2a< a+b\) (Cộng thêm hai vế với a)
\(c< d\Rightarrow2c< c+d\) (Cộng thêm hai vế cho c)
\(m< n\Rightarrow2m< m+n\) (Cộng thêm hai vế cho m)
Suy ra: \(2a+2c+2m=2\left(a+c+m\right)< \left(a+b+c+d+m+n\right)\)
Vì vậy: \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Ta có a<b=>2a<a+b (1)
c<d=>2c<c+d (2)
m<n=>2m<m+n (3)
Cộng (1),(2),(3);vế theo vế ta được
2a+2c+2m<a+b+c+d+m+n
=> 2(a+c+m) <1
a+b+c+d+m+n
=> a+c+m < 1
a+b+c+d+m+n 2
Từ giả thiết, ta có:
\(\dfrac{1}{1+a}\ge1-\dfrac{1}{1+b}+1-\dfrac{1}{1+c}+1-\dfrac{1}{1+d}=\dfrac{b}{1+b}+\dfrac{c}{c+1}+\dfrac{d}{d+1}\ge3\sqrt[3]{\dfrac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)
Tương tự:
\(\dfrac{1}{1+b}\ge3\sqrt[3]{\dfrac{cda}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)
\(\dfrac{1}{1+c}\ge3\sqrt[3]{\dfrac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\dfrac{1}{1+d}\ge3\sqrt[3]{\dfrac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Nhân vế theo vế 4 BĐT vừa chứng minh rồi rút gọn ta được:
\(abcd\le\dfrac{1}{81}\left(đpcm\right)\)
A = 1/(a + 1) + 1/(b + 1) + 1/(c + 1) + 1/(d + 1) ≥ 3
→ 1/(a + 1) ≥ 1 - 1/(b + 1) + 1 - 1/(c + 1) + 1 - 1/(d + 1)
→ 1/(a + 1) ≥ b/(b + 1) + c/(c + 1) + d/(d + 1)
áp dụng BĐT Cauchy cho 3 số dương:
b/(b + 1) + c/(c + 1) + d/(d + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)]
→ 1/(a + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)] tương tự
1/(b + 1) ≥ 3 ³√(acd)/[(a + 1)(c + 1)(d + 1)]
1/(c + 1) ≥ 3 ³√(abd)/[(a + 1)(b + 1)(d + 1)]
1/(d + 1) ≥ 3 ³√(abc)/[(a + 1)(b + 1)(c + 1)]
nhân theo vế → 1/[(a + 1)(b + 1)(c + 1)(d + 1)] ≥ 81abcd/[(a + 1)(b + 1)(c + 1)(d + 1)]
→ 1 ≥ 81abcd → abcd ≤ 1/81