Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(A1)\(^2\)\(\ge\)0
\(\Leftrightarrow a^2-a+\dfrac{1}{4}\ge0\\ \Leftrightarrow a^2+\dfrac{1}{4}\ge a\left(1\right)\\ cmtt:b^2+\dfrac{1}{4}\ge b\left(2\right)\\ 6^2+\dfrac{1}{4}\ge c\left(3\right)\)
Cộng (1);(2) và (3) theo vế, ta có:
\(a^2+\dfrac{1}{4}+b^2+\dfrac{1}{4}+6^2+\dfrac{1}{4}\ge a+b+c\\ \Leftrightarrow a^2+b^2+c^2+\dfrac{3}{4}\ge\dfrac{3}{2}\\ \Leftrightarrow a^2+b^2+c^2\ge\dfrac{3}{2}-\dfrac{3}{4}\\ \Leftrightarrow a^2+b^2+c^2\ge\dfrac{3}{4}\)
\(\left(a+b+c\right)^2=\dfrac{9}{4}\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=\dfrac{9}{4}\)
Có \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)
\(b^2+c^2\ge2\sqrt{b^2c^2}=2bc\)
\(a^2+c^2\ge2\sqrt{a^2c^2}=2ac\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc\le a^2+b^2+c^2+a^2+b^2+a^2+c^2+b^2+c^2=3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\dfrac{9}{4}\le3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^2+b^2+c^2\ge\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\left(ĐPCM\right)\)
Bài này áp dụng BĐT cosi nha bn
\(VT=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}\)
\(VT=3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\c^2+1\ge2\sqrt{c^2}=2c\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) ( 1 )
Theo hệ quả của bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3\ge ab+bc+ca\)
\(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\) ( 2 )
Từ (1) và (2)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Áp dụng BĐT : ( x - y)2 ≥ 0∀x,y
⇒ x2 + y2 ≥ 2xy
Ta có : a2 + b2 ≥ 2ab ( *)
b2 + c2 ≥ 2bc (**)
c2 + a2 ≥ 2ac (***)
Cộng từng vế của ( *;**;***) , ta có :
2( a2 + b2 + c2) ≥ 2( ab + bc + ac)
⇔ 3( a2 + b2 +c2) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{3}{4}\)
Đặt \(a=x+\dfrac{1}{2};b=y+\dfrac{1}{2};c=z+\dfrac{1}{2}\)
Ta có: \(a^2+b^2+c^2=\left(x+\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z+\dfrac{1}{2}\right)^2\)
\(=x^2+x+\dfrac{1}{4}+y^2+y+\dfrac{1}{4}+z^2+z+\dfrac{1}{4}\)
\(=x^2+y^2+z^2+\left(x+y+z\right)+\dfrac{3}{4}\)
\(=x^2+y^2+z^2+\dfrac{3}{2}+\dfrac{3}{4}\)
\(\Rightarrow x^2+y^2+x^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=> đpcm
Câu hỏi của Mashiro Rima - Toán lớp 8 - Học toán với OnlineMath
áp dụng bất đẳng thức buinhia
\(\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\)
\(\Leftrightarrow\left(\frac{3}{2}\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{3}{4}\le a^2+b^2+c^2\)
Ta có : \(\left(a^2-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2-a+\frac{1}{4}\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)
Tương tự : \(b^2+\frac{1}{4}\ge b\) và \(c^2+\frac{1}{4}\ge c\)
Cộng vế theo vế ta được : \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}\ge\frac{3}{2}\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
2a)\(a^2+\dfrac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)
\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)
b)Đã cm
c)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu bằng xảy ra khi a=b=1
A/dụng bđt bunhiacopxki có:
\(\left(a+b+c\right)^2\le\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\left(\dfrac{3}{2}\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{9}{4}:3=\dfrac{3}{4}\)(đpcm)
Dấu ''='' xảy ra khi \(a=b=c=\dfrac{1}{2}\)