K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2015

(a-b)^3=a^3-3a^2b+3ab^2-b^3
(b-c)^3=b^3-3b^2c+3bc^2-c^3
(c-a)^3=c^3-3c^2a+3ca^2-a^3
Cộng ba pt, ta được
-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2
-3(a^2b-ab^2+b^2c-bc^2+c^2a-ca^2)
-3(a^2(b-c)+bc(b-c)-a(b^2-c^2))
-3(b-c)(a^2+bc-a(b+c))
-3(b-c)(a-b)(a-c)=210
(b-c)(a-b)(a-c)=-70
(b-c)(a-b)(a-c)=2*5*(-7)
=>b-c=2, a-b=5, a-c=-7
=>|a-b|+|b-c|+|c-a|=14

15 tháng 8 2015

Huỳnh Ngọc Cẩm Tú copy phải ko ta       

12 tháng 12 2016

(ab)3=a33a2b+3ab2b3(a−b)3=a3−3a2b+3ab2−b3
(bc)3=b33b2c+3bc2c3(b−c)3=b3−3b2c+3bc2−c3
(ca)3=c33c2a+3ca2a3(c−a)3=c3−3c2a+3ca2−a3
=>(ab)3+(bc)3+(ca)3=3a2b+3ab23b2c+3bc23c2a+3ca2=210=>(a−b)3+(b−c)3+(c−a)3=−3a2b+3ab2−3b2c+3bc2−3c2a+3ca2=210
<=>3(a2bab2+b2cbc2+c2aca2)=210<=>−3(a2b−ab2+b2c−bc2+c2a−ca2)=210
<=>3[a2(bc)+bc(bc)a(b2c2)]=210<=>−3[a2(b−c)+bc(b−c)−a(b2−c2)]=210
<=>3(bc)[a2+bca(b+c)]=210<=>−3(b−c)[a2+bc−a(b+c)]=210
<=>3(bc)(a2+bcabac)=210<=>−3(b−c)(a2+bc−ab−ac)=210
<=>3(bc)[a(ac)b(ac)]=3(bc)(ac)(ab)=210<=>−3(b−c)[a(a−c)−b(a−c)]=−3(b−c)(a−c)(a−b)=210
<=>3(bc)(ca)(ab)<=>3(b−c)(c−a)(a−b)
<=>(bc)(ab)(ca)=70<=>(b−c)(a−b)(c−a)=70
=>bc=2,ab=5,ca=7=>b−c=2,a−b=5,c−a=7
=>|ab|+|bc|+|ca|=14

 

12 tháng 12 2016

a-b)^3=a^3-3a^2b+3ab^2-b^3
(b-c)^3=b^3-3b^2c+3bc^2-c^3
(c-a)^3=c^3-3c^2a+3ca^2-a^3
Cộng ba pt, ta được
-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2
-3(a^2b-ab^2+b^2c-bc^2+c^2a-ca^2)
-3(a^2(b-c)+bc(b-c)-a(b^2-c^2))
-3(b-c)(a^2+bc-a(b+c))
-3(b-c)(a-b)(a-c)=210
(b-c)(a-b)(a-c)=-70
(b-c)(a-b)(a-c)=2*5*(-7)
=>b-c=2, a-b=5, a-c=-7
=>|a-b|+|b-c|+|c-a|=14

23 tháng 5 2015

Ta có a-b+b-c+c-a=0 nên (a−b)^3+(b−c)^3+(c−a)^3=3(a−b)(b−c)(c−a)

Do đó 3(a−b)(b−c)(c−a)=210⇔(a−b)(b−c)(c−a)=70

mà a;b;cϵZ→a−b;b−c;c−aϵZ

→a−b;b−c;c−a là ước của 70

Mặt khác 70=(−2)(−5)^7 (do tổng 3 số này bằng 0)

Do đó A=2+5+7=14

12 tháng 5 2019

thanh niên gửi câu hỏi xong tự trả lời câu hỏi của mk luôn

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)

1 tháng 5 2020

Bạn chứng minh các công thức sau:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

Ta có:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca=-10\)

Khi đó \(P=3^3-3\left[\left(-10\right)\cdot3-11\right]\) không biết tính nhanh ntnào hết :P