K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2020

mọi người giải giúp em bài này với 

a3 - 3a2+ 5a – 17 = 0   ,   b3 - 3b2 + 5b + 11 = 0   .   Tính a+b

8 tháng 1 2017

tất nhiên a+b=0

10 tháng 2 2019

\(5a^2+5b^2+8ab-2a+2b+2=0\)

\(\Leftrightarrow4a^2+4b^2+8ab+a^2-2a+1+b^2-2b+1=0\)

\(\Leftrightarrow\left(2a+2b\right)^2+\left(a-1\right)^2+\left(b+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2a+2b=0\\a-1=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a\cdot1+2\left(-1\right)=0\left(tm\right)\\a=1\\b=-1\end{cases}}}\)

Thay a, b vào B ta được :

\(B=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}\)

\(B=0^{2018}+\left(-1\right)^{2019}+0^{2020}\)

\(B=-1\)

10 tháng 2 2019

Dòng 2 là \(+2b\)nhé mình bấm lộn :)