K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

Đáp án C.

Hình a,c,d là hình đa diện còn hình b không phải vì nó vi phạm điều kiện, mỗi cạnh chỉ là giao của 2 mặt.

6 tháng 8 2017

Đáp án B

Phương pháp:

Khái niệm: Hình đa diện gồm một số hữu hạn đa giác phẳng thỏa mãn hai điều kiện:

a) Hai đa giác bất kì hoặc không có điểm chung, hoặc có một đỉnh chung, hoặc có một cạnh chung.

b) Mỗi cạnh của một đa giác là cạnh chung của đúng hai đa giác.

Hình đa diện chia không gian thành hai phần (phần bên trong và phần bên ngoài). Hình đa diện cùng với phần bên trong của nó gọi là khối đa diện.

Cách gii:

Theo khái niệm hình đa diện ta chỉ thấy hình 4 không là hình đa diện.

6 tháng 2 2018

Đáp án là A

Theo khái niệm:

Hình đa diện gồm một số hữu hạn đa giác phẳng thỏa mãn hai điều kiện:

a) Hai đa giác bất kì hoặc không có điểm chung, hoặc có một đỉnh chung, hoặc có một cạnh chung.

b) Mỗi cạnh của một đa giác là cạnh chung của đúng hai đa giác.

Theo khái niệm trên thì hình 1, hình 2, hình 3 là các hình đa diện; hình 4 không phải hình đa diện ( Có cạnh là cạnh chung của 3 đa giác).

24 tháng 3 2016

d đúng còn lại sai

 

10 tháng 7 2016

a)s    b)d     c)d    d)d

7 tháng 8 2019

Đáp án A

Số tam giác tạo bởi các đỉnh của đa giác là C 7 3 = 35  

Số tam giác có 2 cạnh là 2 cạnh của đa giác là 7

Số tam giác có 1 cạnh là cạnh của đa giác là 7.3 = 21 

Vậy số tam giác tạo bởi đỉnh của đa giác và không có cạnh trùng với cạnh của đa giác là 35 - (7 + 21) = 7 tam giác.

Theo đề, ta có:

\(\left\{{}\begin{matrix}1+1+a+b=0\\8+4+2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-2\\2a+b=-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a=10\\a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=8\end{matrix}\right.\)

14 tháng 1 2016

câu a:

xét tứ giác AEHF, ta có

góc A=90(tam giác ABC vuông tại A)

Góc E=90(E là hinh chiếu của H trên AB nên EH vuông góc với AB tại E)

Góc F=90( F là hình chiếu của H trên AC nên HF vuông góc với AC tại F)

TỪ đó suy ra tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông là HCN)

14 tháng 1 2016

Câu b:

Xét tam giác ABC vuông tại A ,ta có:

AM=1/2 *BC( định ý đường trung tuyến trong tam giác vuông)

mà AM=2,5cm (gt)

suy ra BC=cm

Vì tam giác ABC vuông tại A(gt)

nên BC^2=AM^2 + AB^2(định lý pytago)

suy ra AC=4cm

xét tam giác ABC ta có:

S(ABC)=1/2(AB*AC)=1/2(3*4)=6cm vuông