K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

Theo bài ra, ta có: \(C=75\left(4^{2001}+4^{2000}+4^{1999}+...+4^2+4+1\right)+25\)

Đặt \(S=4^{2001}+4^{2000}+4^{1999}+...+4^2+4+1\)

\(\Rightarrow4S=4^{2002}+4^{2001}+4^{2000}+...+4^3+4^2+4\)

\(\Rightarrow4S-S=4^{2002}+4^{2001}+4^{2000}+...+4^3+4^2+4-4^{2001}-4^{2000}-4^{1999}-...4^2-4-1\)

\(\Rightarrow3S=4^{2002}-1\)

\(\Rightarrow S=\dfrac{4^{2002}-1}{3}\)

Khi đó \(C=75.\dfrac{4^{2002}-1}{3}+25=\dfrac{75}{3}.\left(4^{2002}-1\right)+25=25\left(4^{2002}-1\right)+25=25\left(4^{2002}-1+1\right)=25.4^{2002}⋮4^{2002}\)

Vậy \(C⋮4^{2002}\left(đpcm\right)\)

28 tháng 4 2017

2n+3 + 2n+2 - 2n+1 + 2n = 2n.23 + 2n.22 - 2n.2 + 2n

= 2n.(23 + 22 - 2 + 1)

= 2n.11

23 tháng 4 2017

trả lời:

p(-1)=5(-1)^5+3(-1)-4(-1)^4-2(-1)^3+6+4(-1)^2

=-5-3-4+2+6+4=0

q(1)=2.1^4-1+3.1^2-2.1^3+1/4-1^4

=2+3-2+1/4-1=9/4>>4.q(1)=4.9/4=9

30 tháng 7 2017

\(\left\{{}\begin{matrix}\left|x^2-4\right|\ge0\\\left|y^2-9\right|\ge0\end{matrix}\right.\)=>|x2 - 4 | + | y2 - 9 | \(\ge\) 0

Dấu "=" xảy ra khi |x2 - 4 | = | y2 - 9 | = 0

|x2 - 4 |=0 => x2-4=0 => x2=4 => \(x=\pm2\)

| y2 - 9 |=0 =>y2-9=0=>y2=9=>\(y=\pm3\)

Vậy \(x=\pm2\)\(y=\pm3\)

30 tháng 7 2017

Ta có :

\(\left[{}\begin{matrix}\left|x^2-4\right|\ge0\\\left|y^2-9\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|x^2-4\right|+\left|y^2-9\right|\ge0\)

\(x^2-4=0\Rightarrow x=\pm2\)

\(y^2-9=0\Rightarrow y=\pm3\)

Vậy......................

5 tháng 3 2017

\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0

5 tháng 3 2017

thank you!!!!!!yeu

14 tháng 8 2017

\(A=\dfrac{4^2}{1.3}+\dfrac{4^2}{3.5}+\dfrac{4^2}{5.8}+...+\dfrac{4^2}{45.47}.\dfrac{1-3-5-...-49}{8}\)

\(A=4\left(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.8}+...+\dfrac{4}{45.47}\right).\dfrac{1-3-5-...-49}{8}\)\(A=4\left[2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{45}-\dfrac{1}{47}\right)\right].\dfrac{1-3-5-...-49}{8}\)\(A=8\left(1-\dfrac{1}{47}\right).\dfrac{1-3-5-...-49}{8}\)

\(A=8\left(1-\dfrac{1}{47}\right).\dfrac{-623}{8}\)

\(A=\dfrac{368}{47}.\dfrac{-623}{8}=\dfrac{-28658}{47}\)

2 tháng 10 2017

\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)=\(\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot2\cdot10}=\dfrac{2^{10}\cdot3^8-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot2\cdot10}=\dfrac{6}{10}=\dfrac{3}{5}\)

6 tháng 5 2017

mk ko chép đề mà tách luôn nha

M = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2

= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2

= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2

= ( x2 + y2 ) (x2 + x2 + y2 ) + y2

= 1( x2 + 1) + y2

= x2 + y2 +1 = 2

6 tháng 5 2017

thanks bn

28 tháng 9 2017

Ta có: \(1^2+2^2+3^2+...+10^2=358\)

\(S=2^2+4^2+6^2+...+20^2\)

\(=\left(1.2\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+...+\left(2.10\right)^2\)

\(=1^2.2^2+2^2.2^2+3^2.2^2+...+10^2.2^2\)

\(=2^2\left(1^2+2^2+3^2+...+10^3\right)\)

\(=2^2.385\)

\(=4.385=1540\)

28 tháng 9 2017

\(S=2^2+4^2+6^2+....+20^2\)

\(S=\left(1.2\right)^2+\left(2.2\right)^4+\left(2.3\right)^2+...+\left(2.10\right)^2\)

\(S=1^2+2^2+2^2+2^2+2^2+3^2+...+2^2+10^2\)

\(S=2^2.\left(1^2+2^2+3^2+...+10^2\right)\)

\(S=2^2.385\)

\(S=4.385\)

\(\Rightarrow S=1540\)

Vậy...

1. a, Ta có: \(2^{24}=2^{3^8}=8^8\)

Lại có: \(3^{16}=3^{2^8}=9^8\)

\(8^8< 9^8\Rightarrow2^{24}< 3^{16}\)

b, Ta có: \(5^{300}=5^{3^{100}}=125^{100}\)

Lại có: \(3^{500}=3^{5^{100}}=243^{100}\)

\(125^{100}< 243^{100}\Rightarrow5^{300}< 3^{500}\)

c, Ta có: \(2^{700}=2^{7^{100}}=128^{100}\)

Lại có: \(5^{300}=5^{3^{100}}=125^{100}\)

\(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)

d, Ta có: \(2^{400}=2^{2^{200}}=4^{200}\)

\(\Rightarrow2^{400}=4^{200}\)

e, Ta có: \(99^{20}=99^{2^{10}}=9801^{10}\)

\(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)

25 tháng 7 2017

Bài 1:

a) Ta có: 224 = (23)8 = 88 ; 316 = (32)8 = 98

Vì 8 < 9 nên 88 < 98

Vậy 224 < 316.

b) Ta có: 5300 = (53)100 =125100 ; 3500 = (35)100 = 243100

Vì 125 < 243 nên 125100 < 243100

Vậy 5300 < 3500.

c) Ta có: 2700 = (27)100 = 128100; 5300 = (53)100 = 125100

Vì 128 > 125 nên 128100 > 125100

Vậy 2700 > 5300.

d) (làm tương tự)

Vậy 2400 = 4200.

e) (tương tự)

Vậy 9920 < 999910.

f) Ta có: 321 = 320. 3 = 910. 3 ; 231 = 230. 3 = 810. 2

Vì 910 > 810 ; 3 > 2

Nên 910. 3 > 810. 2

Vậy 321 > 231.

Bài 2: phương trình dễ ợt :v