Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1/4+1/5+...+1/10>1/10.7=7/10
1/11+1/12+...+1/19>1/20.9=9/20
Kết hợp lại ta có B= 1/4+1/5+1/6+...+1/19>7/10+9/20=23/20>1.Vậy B>1
ta co 1/4+1/5+......+1/10>1/10.7=7/10
1/11+1/12+.....1/19>1/20.9=9/20
kết hợp lại ta có mB=1/4+1/5+1/6+......1/19>7/10+9/20=23/20>1 vậy B>1
vì \(\frac{1}{4}< 1,\frac{1}{5}< 1,......,\frac{1}{19}< 1\) nên B < 1.
Ta có: \(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)
\(\Rightarrow B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}\right)\)
Vì \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}=5\cdot\frac{1}{9}=\frac{5}{9}>\frac{1}{2}\)
Vì \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{19}+...+\frac{1}{19}=10\cdot\frac{1}{19}=\frac{10}{19}>\frac{1}{2}\)
\(\Rightarrow B>\frac{1}{4}+\frac{5}{9}+\frac{10}{19}>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}=\frac{1}{4}+\frac{2}{4}+\frac{2}{4}\)
\(\Rightarrow B>\frac{5}{4}>1\Rightarrow B>1\)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}=\frac{1}{4}+\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{19}\right)\) > \(\frac{1}{4}+\left(\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}\right)+\left(\frac{1}{19}+...+\frac{1}{19}\right)\)> \(\frac{1}{4}+\frac{5}{9}+\frac{10}{19}>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}=1\)
Vậy \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}>1\)
Ta có :
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+..............+\frac{1}{19}\)
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+.........+\frac{1}{19}\right)\)
Ta thấy :
\(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}=\frac{1}{9}.5=\frac{5}{9}>\frac{1}{2}\)
\(\frac{1}{10}+\frac{1}{11}+....+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{1}{19}.5>\frac{10}{19}>\frac{1}{2}\)
\(\Rightarrow B>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}>1\)
\(B=\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{11}\right)+\left(\frac{1}{12}+...+\frac{1}{19}\right)>\left(\frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\right)+\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)\)=> \(B>\frac{8}{12}+\frac{8}{20}=\frac{2}{3}+\frac{2}{5}=\frac{16}{15}>\frac{15}{15}=1\)
=> ĐPCM
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{4}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{4}+\frac{15}{20}=1\)
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}+\frac{1}{4}=\frac{3}{4}+\frac{1}{4}=1\)
Vậy B>1
Hok tốt
như câu trả lời của bạn Phuc Tran