Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5-\left|2x-1\right|\le5\)
Dấu "=" xảy ra khi:
\(2x=1\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{1}{\left|x-1\right|+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra khi:
\(x=1\)
\(C=x+\dfrac{1}{2}-\left|x-\dfrac{2}{3}\right|\le\left|x+\dfrac{1}{2}-x-\dfrac{2}{3}\right|=\dfrac{1}{6}\)
Dấu "=" xảy ra khi: \(-\dfrac{1}{2}\le x\le\dfrac{2}{3}\)
Ta có: \(\left|2x-1\right|\le0\) với mọi x
\(\Rightarrow5-\left|2x-1\right|\le5-0\) với mọi x
\(\Leftrightarrow A\le5\)
\(\Rightarrow A_{max}=5\)
Dấu \("="\) xảy ra khi:
\(\left|2x-1\right|=0\\ 2x-1=0\\ 2x=1\\ x=1:2=0,5\)
Vậy A đạt giá trị lớn nhất khi \(x=0,5\)
Đặt \(A=\frac{7n-8}{2n-3}\)
Để A lớn nhất thì 2A lớn nhất
Ta có: \(2A=\frac{2.\left(7n-8\right)}{2n-3}=\frac{14n-16}{2n-3}=\frac{14n-21+5}{2n-3}=\frac{7.\left(2n-3\right)+5}{2n-3}\)
\(2A=\frac{7.\left(2n-3\right)}{2n-3}+\frac{5}{2n-3}=7+\frac{5}{2n-3}\)
Do 2A lớn nhất nên \(\frac{5}{2n-3}\)lớn nhất hay 2n - 3 nhỏ nhất
+ Với n < 2 thì 2n - 3 < 0 \(\Rightarrow\frac{5}{2n-3}< 0\left(1\right)\)
+ Với \(n\ge2\) do 2n - 3 nhỏ nhất nên n nhỏ nhất => n = 2 \(\Rightarrow\frac{5}{2n-3}=\frac{5}{2.2-3}=5\left(2\right)\)
So sánh (1) và (2) ta thấy (2) lớn hơn (1) nên A lớn nhất khi n = 2
Với n = 2 thì \(A=\frac{7n-8}{2n-3}=\frac{7.2-8}{2.2-3}=\frac{14-8}{4-3}=6\)
Vậy với n = 2 thì \(\frac{7n-8}{2n-3}\)lớn nhất = 6
a)
\(\left\{{}\begin{matrix}\left(4x-1\right)^4\ge0\\\left|2x-3y\right|\ge0\end{matrix}\right.\) \(\Rightarrow A\ge25,6\) tự tìm cận
không có Max
b) giống vậy
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\\\left|4x-3y\right|\ge0\Rightarrow-\left|4x-3y\right|\le0\end{matrix}\right.\)
\(C\le40,5\) tự tìm cận
không có GTNN
Ta có:
\(\left(x+\dfrac{1}{2}\right)^2\)+1\(\ge\)1
mà \(\left(x+\dfrac{1}{2}\right)^2\)\(\ge\)0
Dấu ''='' xảy ra khi:
\(\left(x+\dfrac{1}{2}\right)^2\)=0
=>x+\(\dfrac{1}{2}\)=0
=>x=\(\dfrac{-1}{2}\)
Vậy GTNN của \(\left(x+\dfrac{1}{2}\right)^2\)+1 là 1 khi x=\(\dfrac{-1}{2}\)
\(D=\frac{x^2+8}{x^2+3}=\frac{x^2+3+5}{x^2+3}=1+\frac{5}{x^2+3}\)
ta có x^2+3>=3 => 5/(x^2+3)<=5/3
=> D = 8/3 tại x=0
câu b)
2(x-1)2 +3 >=3
=> C <= 1/3 tại x=1
Để \(B=\frac{1}{2\left(n-1\right)^2+3}\) đạt GTLN <=> \(2\left(n-1\right)^2+3\) đạt GTNN
Vì \(\left(n-1\right)^2\ge0\) \(\forall\) \(n\) \(\Rightarrow2\left(n-1\right)^2\ge0\) \(\forall\) \(n\)
\(\Rightarrow2\left(n-1\right)^2+3\ge3\) \(\forall\) \(n\)
Dấu "=" xảy ra <=> \(2\left(n-1\right)^2=0\Rightarrow n=1\)
Vật GTLN của B là \(\frac{1}{3}\) tại n = 1