\(\frac{(x+y+z)(x+y)}{xyzt}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

\(4A=\dfrac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\ge\dfrac{4\left(x+y+z\right).t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(=\dfrac{4\left(x+y+z\right)^2\left(x+y\right)t}{xyzt}\ge\dfrac{16\left(x+y\right)^2zt}{xyzt}\ge\dfrac{64xyzt}{xyzt}=64\)

\(\Rightarrow A\ge16\)

Dấu = xảy ra tại \(x=y=\dfrac{1}{4};z=\dfrac{1}{2};t=1\)

14 tháng 6 2017

Ta có:

\(4A=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(=\frac{4\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{16\left(x+y\right)z\left(x+y\right)}{xyz}\)

\(=\frac{16\left(x+y\right)^2}{xy}\ge\frac{64xy}{xy}=64\)

\(\Rightarrow A\ge16\)

Đấu = xảy ra khi \(t=2z=4x=4y=1\)

15 tháng 6 2017

x;y;z;t >0 áp dụng bất đẳng thức Cô-si cho 2 số dương ta có :

=\(x+y\ge2\sqrt{xy}\)

=\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)

=\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)

nhân các vế tương ứng ta có:

\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

mà x+y+z+t=2

\(\left(x+y\right)\left(x+y+z\right)2\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

=\(\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)

=\(\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)

\(\Rightarrow B=\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge\frac{16xyzt}{xyzt}=16\)

vậy minB=16 khi\(\hept{\begin{cases}x=y\\x+y=z\\x+y+z=t\end{cases}};x+y+z+t=2\Rightarrow x=y=0.25;z=0.5;t=1\)

https://hoc24.vn/hoi-dap/question/1008948.html?pos=2676645

26 tháng 7 2019

Ta có:

4 A = ( x + y + z + t ) 2 ( x + y + z ) ( x + y ) x y z t ≥ 4 ( x + y + z ) t ( x + y + z ) ( x + y ) x y z t = 4 ( x + y + z ) 2 ( x + y ) x y z ≥ 4.4 ( x + y ) z ( x + y ) x y z = 16 ( x + y ) 2 x y ≥ 16.4 x y x y ≥ 64 ⇒ A ≥ 16

Đẳng thức xảy ra khi và chỉ khi  x + y + z + t = 2 x + y + z = t x + y = z x = y ⇔ x = y = 1 4 z = 1 2 t = 1

23 tháng 3 2021

Ta có:

\(x+y+z+t=2\)

\(\Rightarrow\left[\left(x+y+z\right)+t\right]^2=4\)

Vì \(x,y,z,t>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)

\(\Leftrightarrow\left[\left(x+y+z\right)+t\right]^2\ge4\left(x+y+z\right)t\)

\(\Leftrightarrow4\ge4\left(x+y+z\right)t\)(vì \(\left[\left(x+y+z\right)+t\right]^2=4\))

\(\Leftrightarrow\left(x+y+z\right)t\le1\left(1\right)\)

Ta có: 

\(P=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}=\frac{1.\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(\Leftrightarrow P\ge\frac{\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)(vì (1))

\(\Leftrightarrow P\ge\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\left(2\right)\)

Đặt \(\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}=A\)thì \(P\ge A\)

Vì \(x,y,z>0\)nên áp dụng bất đẳng thúc Cô-si cho 2 số dương, ta được:

\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge4\left(x+y\right)z\)

Do đó:

\(A=\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{4\left(x+y\right)z\left(x+y\right)}{xyz}\)

\(\Leftrightarrow A\ge\frac{4\left(x+y\right)^2}{xy}\left(3\right)\)

Từ (2) và (3), ta được:

\(P\ge\frac{4\left(x+y\right)^2}{xy}\left(4\right)\)

Vì \(x,y>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow4\left(x+y\right)^2\ge16xy\)

\(\Leftrightarrow\frac{4\left(x+y\right)^2}{xy}\ge\frac{16xy}{xy}=16\left(5\right)\)

Từ (4) và (5), ta được:

\(P\ge16\)

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y>0\\x+y=z>0\\x+y+z=t>0\end{cases}}\)

Mà \(x+y+z+t=2\)nên:

\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\\t=1\end{cases}}\)

Vậy \(minP=16\Leftrightarrow x=y=\frac{1}{4};z=\frac{1}{2};t=1\)

NV
4 tháng 7 2020

\(A=\frac{2^2\left(x+y+z\right)\left(x+y\right)}{4xyzt}=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{4xyzt}\)

\(A\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{4xyzt}=\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{4\left(x+y\right)^2z\left(x+y\right)}{xyz}\)

\(A\ge\frac{4\left(x+y\right)^2}{xy}\ge\frac{16xy}{xy}=16\)

\(A_{min}=16\) khi \(\left\{{}\begin{matrix}x+y+z+t=2\\x+y+z=t\\x+y=z\\x=y\end{matrix}\right.\) \(\Rightarrow\left(x;y;z;t\right)=...\)

30 tháng 5 2017

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

30 tháng 5 2017

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3