K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(T=1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right)\)

\(=1:\dfrac{x+2+x-1-x-\sqrt{x}-1}{x\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b: \(T-3=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

=>T>3

a: \(T=1:\left(\dfrac{x+2+x-1}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right)\)

\(=1:\left(\dfrac{2x+1-x-\sqrt{x}-1}{x\sqrt{x}-1}\right)\)

\(=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b: \(T-3=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

=>T>3

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

Bài 2: 

a: \(P=\dfrac{a-1}{2\sqrt{a}}\cdot\left(\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{a-1}\right)\)

\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}=-2\sqrt{a}\)

b: Để P>=-2 thì P+2>=0

\(\Leftrightarrow-2\sqrt{a}+2>=0\)

=>0<=a<1

Bài 1: 

a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)

=>3 căn x=3

=>căn x=1

hay x=1(loại)

24 tháng 7 2018

Ta có :

a , \(M=2\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\right):\left[\dfrac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)

\(M=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}-\dfrac{2\left(x+9\right)}{x-9}\right]:\left[\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)

\(M=\left(\dfrac{2x-6\sqrt{x}-2x-18}{x-9}\right).\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\right]\)

\(M=\dfrac{-6\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(2\sqrt{x}+4\right)}\)

\(M=\dfrac{-6\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(M=-\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b , mik ko chắc chắn nên mik chưa làm nhé !

8 tháng 1 2018

a) A=\(\dfrac{\sqrt{x}[\left(\sqrt{x}\right)^3-1]}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

A=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\) A=\(\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)

A=\(x-\sqrt{x}+1\)

b) A=\(\dfrac{3}{4}\)

=> \(x-\sqrt{x}+1=\dfrac{3}{4}\)

\(x-\sqrt{x}+\dfrac{1}{4}=0\)

\(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\)

=> \(\sqrt{x}=\dfrac{1}{2}\)

=> \(x=\dfrac{1}{4}\)

26 tháng 7 2018

\(a.A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\) ( x ≥ 0 ; x # 1 )

\(b.\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) \(c.\) \(\dfrac{2}{x+\sqrt{x}+1}\)\(\dfrac{2}{1}=2\left(x\text{≥ }0\right)\)

\(A_{Max}=2."="\)\(x=0\left(TM\right)\)

18 tháng 9 2017

a) P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

P = \(\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

P = \(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

P = \(\dfrac{x-1}{\sqrt{x}}\)

b) Để P > 0

\(\Rightarrow\dfrac{x-1}{\sqrt{x}}>0\)

\(x-1>0\)

\(x>1\)

c) Để P = 6

\(\Rightarrow\dfrac{x-1}{\sqrt{x}}=6\)

\(x-1=6\sqrt{x}\)

\(x-6\sqrt{x}-1=0\)

\(\left(\sqrt{x}-3-\sqrt{10}\right)\left(\sqrt{x}-3+\sqrt{10}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=3+\sqrt{10}\\\sqrt{x}=3-\sqrt{10}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=19+6\sqrt{10}\\x=19-6\sqrt{10}\end{matrix}\right.\)

10 tháng 12 2017

Bài 1:

\(a,E=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(b,E>0\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}>0\)

Mà: \(\sqrt{x}>0\\ \Rightarrow\sqrt{x}-1>0\\ \Leftrightarrow\sqrt{x}>1\\ \Leftrightarrow x>1\)

10 tháng 12 2017

Bài 2:

\(a,G=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{1-\sqrt{x}}-\dfrac{2\sqrt{x}}{x-1}\right)\left(\sqrt{x}+1\right)\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\left(\sqrt{x}+1\right)\\ =\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\left(\sqrt{x}+1\right)\\ =\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\left(\sqrt{x}+1\right)\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\\ =\sqrt{x}-1\)