Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\) (ĐK : x\(\ge0\) ; x\(\ne\) 1)
\(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)
\(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)
Mà Ư(2)={-1;1;2;-1}
=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-1\) | 1 | -1 | 2 | -2 |
a | 4 | 0 | 9 | \(\sqrt{a}=-1\) (ktm) |
vậy a={0;4;9} thì P nguyên
Bài 2
\(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)
\(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)
\(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)
\(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)
\(=\frac{2a}{\sqrt{a-4}}\)
\(P=\left(\frac{3x+3}{x-9}-\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{3-\sqrt{x}}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right).ĐKXĐ:x\ge0,x\ne9\)
\(=\left(\frac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{3x+3-2x+6\sqrt{x}-x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(=\frac{3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3}{\sqrt{x}+3}\)
\(b,x=20-6\sqrt{11}=11-2.3\sqrt{11}+9\)
\(=\left(\sqrt{11}-3\right)^2\)
\(P=\frac{3}{\sqrt{x}+3}=\frac{3}{\sqrt{\left(\sqrt{11}-3\right)^2}+3}=\frac{3}{\sqrt{11}-3+3}=\frac{3\sqrt{11}}{11}\)
\(c,P>\frac{1}{2}\Rightarrow\frac{3}{\sqrt{x}+3}>\frac{1}{2}\)
\(\Leftrightarrow\frac{3}{\sqrt{x}+3}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)
\(\Leftrightarrow\frac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)\(\Leftrightarrow\frac{3-\sqrt{x}}{2\left(\sqrt{x}+3\right)}>0\)
vì \(2\left(\sqrt{x}+3\right)>0\) (nếu x=0 =>pt vô nghiệm)
\(\Rightarrow3-\sqrt{x}>0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\)
Kết hợp ĐKXĐ: \(0< x< 9\)
a) Đkxđ: \(x\ne4\)
Thay x=9 vào A ta được:
\(\frac{9+3}{\sqrt{9}-2}=\frac{12}{3-2}=12\)
b)Ta có \(B=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(\Rightarrow B=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c) TA có \(\frac{4B}{A}=\frac{4\sqrt{x}}{\sqrt{x}-2}:\frac{x+3}{\sqrt{x}-2}=\frac{\left(4\sqrt{x}\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(x+3\right)}\)
\(=\frac{4\sqrt{x}}{x+3}\)
Để \(\frac{4B}{A}=\frac{4\sqrt{x}}{x+3}\in Z\)thì \(x+3\inƯ\left(4\right);x=a^2\left(a\in Z\right)\)
Với \(x+3\inƯ\left(4\right)\Rightarrow x\in\left\{-5;-4;-2;\pm1;7\right\}\)mà \(x=a^2\Rightarrow x=1\left(TM\right)\)
Vậy x=1
Hok tốt!
a) \(P\)\(=\sqrt{x}-2+3-3\sqrt{x}=1-2\sqrt{x}\)
b) \(Q=\frac{2\left(1-2\sqrt{x}\right)}{1-1+2\sqrt{x}}=\frac{1-2\sqrt{x}}{\sqrt{x}}=\frac{1}{\sqrt{x}}-2\)
vậy x=1 thỏa mãn đề bài.
Trả lời :.............................
x=1...........................
Hk tốt..............................
a) \(A=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3}{\sqrt{x}+3}\)
b) \(A=\frac{1}{3}=>\frac{3}{\sqrt{x}+3}=\frac{1}{3}\)
\(=>\sqrt{x}+3=9\)
\(=>\sqrt{x}=6=>x=36\)
c) \(A\)\(lớn\)\(nhất\)\(< =>\frac{3}{\sqrt{x}+3}lớn\)\(nhất\)
\(=>\sqrt{x}+3\)\(nhỏ\)\(nhất\)
\(Mà\)\(\sqrt{x}+3>=3
\)
\(Do\)\(đó\)\(\sqrt{x}+3=3=>x=0\)
học lớp 9 chưa mà đòi đăng ? :))
a) Ta có : \(A=\frac{x+5\sqrt{x}}{x-25}=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}}{\sqrt{x}-5}\)
Để A nhận giá trị = 0 thì \(\sqrt{x}=0\)<=> x = 0 ( tmđk )
Vậy với x = 0 thì A = 0
b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)
c) P = B : A = \(\frac{\frac{\sqrt{x}}{\sqrt{x}+3}}{\frac{\sqrt{x}}{\sqrt{x}-5}}=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}}{\sqrt{x}-5}=\frac{\sqrt{x}}{\sqrt{x}+3}\times\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
Xét hiệu P - 1 ta có :
\(\frac{\sqrt{x}-5}{\sqrt{x}+3}-1=\frac{\sqrt{x}-5}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\frac{-8}{\sqrt{x}+3}\)
Vì \(\hept{\begin{cases}-8< 0\\\sqrt{x}+3>0\end{cases}}\Rightarrow\frac{-8}{\sqrt{x}+3}< 0\)hay P - 1 < 0
=> P < 1
a) \(A=0\Rightarrow\frac{x+5\sqrt{x}}{x-25}=0\Rightarrow x+5\sqrt{x}=0\Leftrightarrow x=0\)(thỏa mãn).
b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)
\(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{\sqrt{x}}{\sqrt{x}+3}\)
c) \(P=B\div A=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}< 1\)
\(B=\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}-\frac{3\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}-\frac{a-2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{a+3\sqrt{a}-3\sqrt{a}+9-a+2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}=\frac{11}{a-9}\)
Để B nguyên thì \(\frac{11}{a-9}\inℤ\Leftrightarrow a-9\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
đến đây bạn tự lập bảng xét ước nhé :c chú ý ĐK giùm mình không lại sai :>