K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

khó !!!

5 tháng 9 2016

Cứ quy đồng là ra à. Làm biếng trình bày quá. Nên cho bạn đáp số thôi nhé

a/ \(\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)

b/ x = 3 và A = 4

11 tháng 10 2020

a) Ta có: \(3x+2\sqrt{3x}+4=\left(\sqrt{3x}+1\right)^2+3>0;1+\sqrt{3x}>0,\forall x\ge0\), nên đk để A có nghĩa là

\(\left(\sqrt{3x}\right)^3-8-\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)\ne0;x\ge0\Leftrightarrow\sqrt{3x}\ne2\Leftrightarrow0\le x\ne\frac{4}{3}\)

A=\(\left(\frac{6x+4}{\left(\sqrt{3x}\right)^3-2^3}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)

\(=\left(\frac{6x+4-\left(\sqrt{3x}-2\right)\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-\sqrt{3x}+1-\sqrt{3x}\right)\)

\(=\left(\frac{3x+4+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-2\sqrt{3x}+1\right)\)

\(=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\left(0\le x\ne\frac{4}{3}\right)\)

b) \(A=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}=\frac{\left(\sqrt{3x}-2\right)^2+2\left(\sqrt{3x}-2\right)+1}{\sqrt{3x}-2}=\sqrt{3x}+\frac{1}{\sqrt{3x}-2}\)

Với \(x\ge0\), để A là số nguyên thì \(\sqrt{3x}-2=\pm1\Leftrightarrow\orbr{\begin{cases}\sqrt{3x}=3\\\sqrt{3x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=9\\3x=1\end{cases}\Leftrightarrow}x=3}\)  (vì \(x\in Z;x\ge0\))

Khi đó A=4

2 tháng 5 2017

Bạn ơi bạn đã giải được bài 1 chưa vậy? 

20 tháng 7 2016

mk nghĩ bạn chép sai đề hình như đề bài phải là \(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\)

ta xét \(A^3=\left(\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\right)^3\)

  <=> \(A^3=x^3-3x+3A\cdot\sqrt[3]{\frac{4}{4}}\)

<=> \(A^3=x^3-3x+3A\)

<=> \(A^3-3A-x^3+3x=0\)

<=>\(\left(A^3-x^3\right)-3A+3x=0\)

<=> \(\left(A-x\right)\left(A^2+Ax+x^2\right)-3\left(A-x\right)=0\)

<=> \(\left(A-x\right)\left(A^2+Ax+x^2-3\right)=0\)

<=> \(\orbr{\begin{cases}A=x\\A^2+Ax+x^2-3=0\end{cases}}\)(vô lí )

vậy \(A=x\)

NV
29 tháng 6 2019

Câu a kia đề là \(3\sqrt{3x^3-8}\) hay \(3\sqrt{3x^3}-8\)

b/ \(x=\sqrt[3]{5\sqrt{6}+5}-\sqrt[3]{5\sqrt{6}-5}\)

\(\Rightarrow x^3=10-3x\left(\sqrt[3]{\left(5\sqrt{6}+5\right)\left(5\sqrt{6}-5\right)}\right)=10-15x\)

\(\Leftrightarrow x^3+15x=10\)

29 tháng 6 2019

3\(\sqrt{3x^3}-8\) nhé , mình ghi nhầm .