K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

1) Bạn đánh nhầm \(\sqrt{x}+3\rightarrow\sqrt{x+3}\)\(\sqrt{x}-3\rightarrow\sqrt{x-3}\)

Sửa : \(ĐKXĐ:x\ne\pm\sqrt{3}\)

a) \(M=\frac{x-\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}+3}-\frac{1}{\sqrt{x}-3}\)

\(\Leftrightarrow M=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow M=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow M=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow M=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)

b) Để \(M=\frac{3}{4}\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{4}\)

\(\Leftrightarrow4\sqrt{x}+8=3\sqrt{x}+9\)

\(\Leftrightarrow\sqrt{x}-1=0\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)(tm)

Vậy để \(A=\frac{3}{4}\Leftrightarrow x=1\)

c) Khi x = 4

\(\Leftrightarrow M=\frac{\sqrt{4}+2}{\sqrt{4}+3}\)

\(\Leftrightarrow M=\frac{2+2}{2+3}\)

\(\Leftrightarrow M=\frac{4}{5}\)

Vậy khi \(x=4\Leftrightarrow M=\frac{4}{5}\)

7 tháng 3 2020

Cho mik sửa ĐKXĐ: \(x\ne9\)nhé !

24 tháng 11 2019

\(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)

\(P=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(P=\left(\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(P=\frac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-5x\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)

\(P=\frac{4\sqrt{x}\left(2+5x\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)

\(P=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)

\(P=\frac{-4x}{3-\sqrt{x}}\)

\(P=\frac{4x}{\sqrt{x}-3}\)

Có:

\(m\left(\sqrt{x}-3\right)P>x+1\)

\(\Leftrightarrow m\left(\sqrt{x}-3\right).\frac{4x}{\sqrt{x}-3}>x+1\)

\(\Leftrightarrow4mx>x+1\)

\(\Leftrightarrow4mx-x>1\)

\(\Leftrightarrow\left(4m-1\right)x>1\)

\(\Leftrightarrow x>\frac{1}{4m-1}\)

Lại có:

\(x>9\)

\(\Rightarrow\frac{1}{4m-1}< 9\)

\(\Leftrightarrow1< 9\left(4m-1\right)\)

\(\Leftrightarrow1< 36m-1\)

\(\Leftrightarrow10< 36m\)

\(\Leftrightarrow m< \frac{5}{18}\)

24 tháng 11 2019

Ấy, nhầm nha. 

Đoạn cuối là m<5/18

Vội quá gõ nhầm. 

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
21 tháng 11 2021

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111