K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)

Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất

\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất

\(\Rightarrow\frac{5}{2x-3}\) lớn nhất

\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0

Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow2x\in\left\{4;8\right\}\)

\(\Rightarrow x\in\left\{2;4\right\}\)

Mà x nhỏ nhất và x > 0 nên x = 2

Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)

Vậy MaxA = 6 tại x = 2.

4 tháng 2 2016

minh moi hoc lop 6 nen k bit lam

4 tháng 2 2016

x=-20000000000000000000000002 thu ma coi

17 tháng 1 2020

\(a)A=2+|x+3|\)

Vì \(|x+3|\ge0\)\(\forall x\)

\(\Rightarrow2+|x+3|\ge2\)\(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy \(Max_A=2\Leftrightarrow x=-3\)

\(b)B=\frac{3}{2}+|2x-1|\)

Vì \(|2x-1|\ge0\)\(\forall x\)

\(\Rightarrow\frac{3}{2}+|2x-1|\ge\frac{3}{2}\)\(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Max_B=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)