Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ĐKXĐ:\(x\ne2,x\ne-3\)
\(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
\(=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x-4}{x-2}\)
c,Để A = - 3/4
thì: \(\frac{x-4}{x-2}=-\frac{3}{4}\)
\(\Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\)
\(4x-16=-3x+6\)
\(4x+3x=6+16\)
\(7x=22\)
\(x=\frac{22}{7}\)
d,\(A=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=\frac{x-2}{x-2}-\frac{2}{x-2}=1-\frac{2}{x-2}\)
Để A nguyên thì: \(x-2\inƯ\left(2\right)\)
Ta có: \(Ư\left(2\right)=\left\{\pm1,\pm2\right\}\)
Xét từng TH:
_ x - 2 = -1 => x = 1
_ x - 2 = 1 => x = 3
_ x - 2 = -2 => x = 0
_ x- 2 = 2 => x= 4
Vậy: \(x\in\left\{0,1,3,4\right\}\)
=.= hok tốt!!
Bài làm
\(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
\(=\frac{x+2}{x+3}-\frac{5}{x^2+3x-2x-6}-\frac{1}{x-2}\)
\(=\frac{x+2}{x+3}-\frac{5}{x\left(x+3\right)-2\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b) x2 - 9 = 0 <=> ( x - 3 )( x + 3 ) = 0
<=> \(\orbr{\begin{cases}x=3\left(nhan\right)\\x=-3\left(loai\right)\end{cases}}\)
x = 3 => \(P=\frac{3-4}{3-2}=-1\)
c) \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)
Để P đạt giá trị nguyên => \(\frac{2}{x-2}\)nguyên
=> \(2⋮x-2\)
=> \(x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x-2 | 1 | -1 | 2 | -2 |
x | 3 | 1 | 4 | 0 |
Vậy ...
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)
a/ ĐKXĐ ....
A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
=\(\frac{1}{x}-\frac{1}{x-5}\)
=\(-\frac{5}{x^2-5x}\)
b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)
<=> x=-1, thay vào tính nốt
1. P = \(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\) ĐKXĐ: \(x\ne-3\), \(x\ne2\)
= \(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)
= \(\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{x-2}\)
= \(\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
= \(\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
= \(\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
= \(\frac{x-4}{x-2}\)
2. P=\(\frac{-3}{4}\)
<=> \(\frac{x-4}{x-2}=\frac{-3}{4}\)
<=> 4 ( x - 4 ) = -3 ( x - 2 )
<=> 4x - 16 = -3x + 6
<=> 7x = 2
<=> x = \(\frac{22}{7}\)
3. \(x^2-9=0\)
<=> ( x -3 ) ( x + 3 ) = 0
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)
-> P = \(\frac{3-4}{3-2}\) = -1